从头学pytorch(四) softmax回归实现】的更多相关文章

一.什么是softmax? 有一个数组S,其元素为Si ,那么vi 的softmax值,就是该元素的指数与所有元素指数和的比值.具体公式表示为: softmax回归本质上也是一种对数据的估计 二.交叉熵损失函数 在估计损失时,尤其是概率上的损失,交叉熵损失函数更加常用.下面是交叉熵 当我们预测单个物体(即每个样本只有1个标签),y(i)为我们构造的向量,其分量不是0就是1,并且只有一个1(第y(i)个数为1).于是.交叉熵只关心对正确类别的预测概率,因为只要其值足够大,就可以确保分类结果正确.遇…
FashionMNIST数据集共70000个样本,60000个train,10000个test.共计10种类别. 通过如下方式下载. mnist_train = torchvision.datasets.FashionMNIST(root='/home/sc/disk/keepgoing/learn_pytorch/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor()) mnist_t…
跟着Dive-into-DL-PyTorch.pdf从头开始学pytorch,夯实基础. Tensor创建 创建未初始化的tensor import torch x = torch.empty(5,3) print(x) 输出 tensor([[ 2.0909e+21, 3.0638e-41, -2.4612e-30], [ 4.5650e-41, 3.0638e-41, 1.7753e+28], [ 4.4339e+27, 1.3848e-14, 6.8801e+16], [ 1.8370e+…
卷积神经网络 在之前的文章里,对28 X 28的图像,我们是通过把它展开为长度为784的一维向量,然后送进全连接层,训练出一个分类模型.这样做主要有两个问题 图像在同一列邻近的像素在这个向量中可能相距较远.它们构成的模式可能难以被模型识别. 对于大尺寸的输入图像,使用全连接层容易造成模型过大.假设输入是高和宽均为1000像素的彩色照片(含3个通道).即使全连接层输出个数仍是256,该层权重参数的形状是\(3,000,000\times 256\),按照参数为float,占用4字节计算,它占用了大…
深度学习中常常会存在过拟合现象,比如当训练数据过少时,训练得到的模型很可能在训练集上表现非常好,但是在测试集上表现不好. 应对过拟合,可以通过数据增强,增大训练集数量.我们这里先不介绍数据增强,先从模型训练的角度介绍常用的应对过拟合的方法. 权重衰减 权重衰减等价于 \(L_2\) 范数正则化(regularization).正则化通过为模型损失函数添加惩罚项使学出的模型参数值较小,是应对过拟合的常用手段.我们先描述\(L_2\)范数正则化,再解释它为何又称权重衰减. \(L_2\)范数正则化在…
关于什么是线性回归,不多做介绍了.可以参考我以前的博客https://www.cnblogs.com/sdu20112013/p/10186516.html 实现线性回归 分为以下几个部分: 生成数据集 读取数据 初始化模型参数 定义模型 定义损失函数 定义优化算法 训练模型 生成数据集 我们构造一个简单的人工训练数据集,它可以使我们能够直观比较学到的参数和真实的模型参数的区别.设训练数据集样本数为1000,输入个数(特征数)为2.给定随机生成的批量样本特征 \(\boldsymbol{X} \…
批量归一化 论文地址:https://arxiv.org/abs/1502.03167 批量归一化基本上是现在模型的标配了. 说实在的,到今天我也没搞明白batch normalize能够使得模型训练更稳定的底层原因,要彻底搞清楚,涉及到很多凸优化的理论,需要非常扎实的数学基础才行. 目前为止,我理解的批量归一化即把每一层输入的特征,统一变换到统一的尺度上来,避免各个特征的单位不统一的情况.即把每一个特征的分布都转变为均值为0,方差为1的分布. 然后在变换后的数据的基础上加一个线性变换. 关于b…
残差网络ResNet resnet是何凯明大神在2015年提出的.并且获得了当年的ImageNet比赛的冠军. 残差网络具有里程碑的意义,为以后的网络设计提出了一个新的思路. googlenet的思路是加宽每一个layer,resnet的思路是加深layer. 论文地址:https://arxiv.org/abs/1512.03385 论文里指出,随着网络深度的增加,模型表现并没有更好,即所谓的网络退化.注意,不是过拟合,而是更深层的网络即便是train error也比浅层网络更高. 这说明,深…
多层感知机 上图所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit).由于输入层不涉及计算,图3.3中的多层感知机的层数为2.由图3.3可见,隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接.因此,多层感知机中的隐藏层和输出层都是全连接层. 具体来说,给定一个小批量样本\(\boldsymbol{X} \in \mathbb{R}^{n \times d}\),其批量大小为\(n\),输入个数为\(…
PyTorch提供的autograd包能够根据输⼊和前向传播过程⾃动构建计算图,并执⾏反向传播. Tensor Tensor的几个重要属性或方法 .requires_grad 设为true的话,tensor将开始追踪在其上的所有操作 .backward()完成梯度计算 .grad属性 计算的梯度累积到.grad属性 .detach()解除对一个tensor上操作的追踪,或者用with torch.no_grad()将不想被追踪的操作代码块包裹起来. .grad_fn属性 该属性即创建Tensor…