BP神经网络分类应用】的更多相关文章

DNA序列分类  作为研究DNA序列结构的尝试,提出以下对序列集合进行分类的问题:有20个已知类别的人工制造序列,其中序列标号1-10为A类,11-20为B类.请从中提取特征,构造分类方法,并用这些已知类别的序列,衡量你的方法是否足够好.然后用你认为满意的方法,对另外20个未标明类别的人工序列(标号21-40)进行分类,判断哪些属于A类,哪些属于B类,哪些既不属于A类又不属于B类. (一)问题分析 采用DNA序列中4个字符的含量百分比对DNA序列进行分类. (二)模型建立 (1)BP神经网络结构…
[废话外传]:终于要讲神经网络了,这个让我踏进机器学习大门,让我读研,改变我人生命运的四个字!话说那么一天,我在乱点百度,看到了这样的内容: 看到这么高大上,这么牛逼的定义,怎么能不让我这个技术宅男心向往之?现在入坑之后就是下面的表情: 好了好了,玩笑就开到这里,其实我是真的很喜欢这门学科,要不喜欢,老子早考公务员,找事业单位去了,还在这里陪你们牛逼打诨?写博客,吹逼? 1神经网络历史(本章来自维基百科,看过的自行跳过) 沃伦·麦卡洛克)[基于数学和一种称为阈值逻辑的算法创造了一种神经网络的计算…
秋招刚结束,这俩月没事就学习下斯坦福大学公开课,想学习一下深度学习(这年头不会DL,都不敢说自己懂机器学习),目前学到了神经网络部分,学习起来有点吃力,把之前学的BP(back-progagation)神经网络复习一遍加深记忆.看了许多文章发现一PPT上面写的很清晰,就搬运过来,废话不多说,直入正题: 单个神经元 神经网络是由多个"神经元"组成,单个神经元如下图所示: 这其实就是一个单层感知机,输入是由ξ1 ,ξ2 ,ξ3和Θ组成的向量.其中Θ为偏置(bias),σ为激活函数(tran…
神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了.神经网络有很多种:前向传输网络.反向传输网络.递归神经网络.卷积神经网络等.本文介绍基本的反向传输神经网络(Backpropagation 简称BP),主要讲述算法的基本流程和自己在训练BP神经网络的一些经验. BP神经网络的结构 神经网络就是模拟人的大脑的神经单元的工作方式,但进行了很大的简化,神经网络由很多神经网络层构成,而每一层又由许多单元组成,第一层叫输入层,最后一层叫输出层,中间的各层叫隐藏层,在BP神经网络中,只有…
BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 下图为一典型的多层神经网络. 通常一个多层神经网络由L层神经元组成,其中:第1层称为输入层,最后一层(第L层)被称为输出层,其它各层均被称为隐含层(第2层~第L-1层). 令输入向量为: \[ \vec x = [x_1 \quad x_2 \quad \ldots \quad x_i \quad…
一.两层神经网络(感知机) import numpy as np '''极简两层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) y = np.array([0,0,1,1]) # 权值矩阵 初始化 Wi = 2 * np.random.random(3) - 1 for iter in range(10000): # 前向传播,计算误差 li = X lo = 1 / (1 + np.exp(-np.dot(l…
 BP神经网络基本原理 BP神经网络是一种单向传播的多层前向网络,具有三层或多层以上的神经网络结构,其中包含输入层.隐含层和输出层的三层网络应用最为普遍. 网络中的上下层之间实现全连接,而每层神经元之间无连接.当一对学习样本提供给网络后,神经元的激活值从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入相应.然后,随着减小目标输出与实际误差的方向,从输出层经过各中间层修正各连接权值,最后回到输入层. BP算法是在建立在梯度下降基础上的,BP算法的知道思想是对网络权值与阈值的修正,使误…
BP神经网络基本原理: 误差逆传播(back propagation, BP)算法是一种计算单个权值变化引起网络性能变化的较为简单的方法.由于BP算法过程包含从输出节点开始,反向地向第一隐含层(即最接近输入层的隐含层)传播由总误差引起的权值修正,所以称为"反向传播".BP神经网络是有教师指导训练方式的多层前馈网络,其基本思想是:从网络输入节点输入的样本信号向前传播,经隐含层节点和输出层节点处的非线性函数作用后,从输出节点获得输出.若在输出节点得不到样本的期望输出,则建立样本的网络输出与…
这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知识.下面是一些笔记概要. 一. 神经网络 神经网络我之前听过无数次,但是没有正儿八经研究过.形象一点来说,神经网络就是人们模仿生物神经元去搭建的一个系统.人们创建它也是为了能解决一些其他方法难以解决的问题. 对于单一的神经元而言,当生物刺激强度达到一定程度,其就会被激发,然后做出一系列的反应.模仿这…
将神经网络做成实时分布式架构: Storm 分布式BP神经网络:    http://bbs.csdn.net/topics/390717623 流式大数据处理的三种框架:Storm,Spark和Samza: 许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中, 先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的主控节…