sklearn中pipeline的用法和FeatureUnion】的更多相关文章

一.pipeline的用法 pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selection->normalization->classification pipeline提供了两种服务: Convenience:只需要调用一次fit和predict就可以在数据集上训练一组estimators Joint parameter selection可以把grid search 用在p…
很多框架都会提供一种Pipeline的机制,通过封装一系列操作的流程,调用时按计划执行即可.比如netty中有ChannelPipeline,TensorFlow的计算图也是如此. 下面简要介绍sklearn中pipeline的使用: from sklearn.pipeline import Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.impute import SimpleImputer from…
在将sklearn中的模型持久化时,使用sklearn.pipeline.Pipeline(steps, memory=None)将各个步骤串联起来可以很方便地保存模型. 例如,首先对数据进行了PCA降维,然后使用logistic regression进行分类,如果不使用pipeline,那么我们将分别保存两部分内容,一部分是PCA模型,一部分是logistic regression模型,稍微有点不方便.(当然,这么做也完全可以,使用Pipeline只是提供个方便罢了) 1.Pipeline中的…
前面提到,应用sklearn中的pipeline机制的高效性:本文重点讨论pipeline与网格搜索在机器学习实践中的结合运用: 结合管道和网格搜索以调整预处理步骤以及模型参数 一般地,sklearn中经常用到网格搜索寻找应用模型的超参数:实际上,在训练数据被送入模型之前,对数据的预处理中也会有超参数的介入,比如给数据集添加多项式特征时所指定的指数大小: 而且,一般都是将数据预处理完成后再传入估计器进行拟合,此时利用网格搜索只会单独调整估计器的超参数:如若利用pipeline结合预处理步骤和模型…
多项式回归以及在sklearn中使用多项式回归和pipeline 多项式回归 线性回归法有一个很大的局限性,就是假设数据背后是存在线性关系的,但是实际上,具有线性关系的数据集是相对来说比较少的,更多时候,数据之间是具有的非线性的关系,那么我们想要用线性回归法来对非线性的数据进行处理应该怎么办呢,我们可以使用多项式回归的手段来改进线性回归法,使线性回归法也可以对非线性的数据进行处理,并进行预测 通过多项式回归可以引出一个很重要的概念,即模型泛化的问题 什么是多项式回归呢? 对于线性回归来说,对于数…
这个repo 用来记录一些python技巧.书籍.学习链接等,欢迎stargithub地址sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的各种用法,主要是对sklearn官方文档 Cross-validation: evaluating estimator performance进行讲解,英文水平好的建议读官方文档,里面的知识点很详细. 先导入需要的库及数据集In [1]: import numpy as n…
投票法(voting)是集成学习里面针对分类问题的一种结合策略.基本思想是选择所有机器学习算法当中输出最多的那个类. 分类的机器学习算法输出有两种类型:一种是直接输出类标签,另外一种是输出类概率,使用前者进行投票叫做硬投票(Majority/Hard voting),使用后者进行分类叫做软投票(Soft voting). sklearn中的VotingClassifier是投票法的实现. 硬投票 硬投票是选择算法输出最多的标签,如果标签数量相等,那么按照升序的次序进行选择.下面是一个例子: fr…
一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常常需要对原始变量进行一系列的预处理及筛选,剔除掉冗杂无用的成分,得到较为满意的训练集,才会继续我们的学习任务,这就是我们常说的特征选取(feature selection).本篇就将对常见的特征选择方法的思想及Python的实现进行介绍: 二.方法综述 2.1 去除方差较小的变量 这种方法针对离散型…
小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是Jupyter lab,所用的库和版本大家参考: Python 3.7.1(你的版本至少要3.4以上) Scikit-learn 0.20.0 (你的版本至少要0.19) Numpy 1.15.3, Pandas 0.23.4, Matplotlib 3.0.1, SciPy 1.1.0 1 skl…
sklearn中的多项式回归算法 1.多项式回归法多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加,然后基于升维后的数据集用线性回归的思路进行求解,从而得到相应的预测结果和各项的系数. 2.多项式回归的函数在pyhton的sklearn机器学习库中没有专门的定义,因为它只是线性回归方式的一种特例,但是我们自己可以按照多元线性回归的方式对整个过程进行相关的定义,然后包装成为一个函数进行相关的调用即…
处理分类特征:编码与哑变量 在机器学习中,大多数算法,譬如逻辑回归,支持向量机SVM,k近邻算法等都只能够处理数值型数据,不能处理文字,在sklearn当中,除了专用来处理文字的算法,其他算法在fit的时候全部要求输入数组或矩阵,也不能够导入文字型数据(其实手写决策树和普斯贝叶斯可以处理文字,但是sklearn中规定必须导入数值型).然而在现实中,许多标签和特征在数据收集完毕的时候,都不是以数字来表现的.比如说,学历的取值可以是["小学",“初中”,“高中”,"大学"…
sklearn中的SVM以及使用多项式特征以及核函数 sklearn中的SVM的使用 SVM的理论部分 需要注意的是,使用SVM算法,和KNN算法一样,都是需要做数据标准化的处理才可以,因为不同尺度的数据在其中的话,会严重影响SVM的最终结果 (在notebook中) 加载好需要的包,使用鸢尾花数据集,为了方便可视化,只取前两个特征,然后将其绘制出来 import numpy as np import matplotlib.pyplot as plt from sklearn import da…
女朋友不是学计算机的,但是现在从事计算机行业,做技术支持,她想学习编程,因此我打算每天教她一点点,日积月累,带她学习编程,如果其他初学者感兴趣,可以跟着学. 为了将table介绍的简单.生动,具有实战性,我花了3个半小时,写了5个列子,把table的一些重点知识讲了一下,直接看代码吧,一边看一边跟着敲,多动手练习. 1,边框不重叠的3行3列表格 <html> <head> <title> html中table的用法和例子 </title> </head…
这些天在思考知识体系的完整性,发现总是对消息队列的实现不满意,索性看看内核里面的链表实现形式,这篇文章就当做是学习的i笔记吧.. 内核代码中有很多的地方使用了list,而这个list的用法又跟我们平时在教科书中常见的用法有很大的不同,所以有必要详细了解下这里面的门道. 内核里面的list(如没有特殊说明,下文说的list都是指内核里面的list)可称之为侵入式链表.这种list最突出的特征就是其节点中不含有任何数据,相反,list节点是嵌入到特定的数据结构中的.大家自然就会问了,这样实现有什么好…
什么要单独写个Java8新特性,一个原因是我目前所在的公司用的是jdk8,并且框架中用了大量的Java8的新特性,如上篇文章写到的stream方法进行过滤map集合.stream方法就是接口Collection中的default方法.所以准备专门写写关于java8新特性的文章,虽然现在10已经发布了.但还是要认真的去了解下新版本的变化. static方法 java8中为接口新增了一项功能:定义一个或者更多个静态方法.用法和普通的static方法一样. 代码示例 public interface…
一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完的模型在本地保存成.m文件,方法如下: skilearn保存模型方法 keras也可以把模型保存成.h5文件,方法如下: keras保存模型方法 pybrain可以把模型保存成xml文件,方法如下: pybrain保存模型方法 2. 评价标准 mae(平均绝对误差) 平均绝对误差是绝对误差的平均值,…
第十三次作业——回归模型与房价预测 1. 导入boston房价数据集 2. 一元线性回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 3. 多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果. 4.  一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示. 代码: #导入boston房价数据集 from sklearn.datasets import load_boston import pandas as pd boston =…
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略.见下. Metric函数:metrics模块实现了一些函数,用来评估预测误差.见下. 2. scoring参数 模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross…
一:sklearn中决策树的参数: 1,criterion: ”gini” or “entropy”(default=”gini”)是计算属性的gini(基尼不纯度)还是entropy(信息增益),来选择最合适的节点. 2,splitter: ”best” or “random”(default=”best”)随机选择属性还是选择不纯度最大的属性,建议用默认. 3,max_features: 选择最适属性时划分的特征不能超过此值. 当为整数时,即最大特征数:当为小数时,训练集特征数*小数: if…
原文引自:https://blog.csdn.net/ganyingxie123456/article/details/70855586 最近又遇到了JacvaScript中的call()方法和apply()方法,而在某些时候这两个方法还确实是十分重要的,那么就让我总结这两个方法的使用和区别吧. 1. 每个函数都包含两个非继承而来的方法:call()方法和apply()方法. 2. 相同点:这两个方法的作用是一样的. 都是在特定的作用域中调用函数,等于设置函数体内this对象的值,以扩充函数赖以…
写在前面 之前只停留在理论上,没有实际沉下心去调参,实际去做了后,发现调参是个大工程(玄学).于是这篇来总结一下sklearn中svm的参数说明以及调参经验.方便以后查询和回忆. 常用核函数 1.linear核函数: K(xi,xj)=xTixjK(xi,xj)=xiTxj 2.polynomial核函数: K(xi,xj)=(γxTixj+r)d,d>1K(xi,xj)=(γxiTxj+r)d,d>1 3.RBF核函数(高斯核函数): K(xi,xj)=exp(−γ||xi−xj||2),γ…
metrics是sklearn用来做模型评估的重要模块,提供了各种评估度量,现在自己整理如下: 一.通用的用法:Common cases: predefined values 1.1 sklearn官网上给出的指标如下图所示: 1.2除了上图中的度量指标以外,你还可以自定义一些度量指标:通过sklearn.metrics.make_scorer()方法进行定义: make_scorer有两种典型的用法: 用法一:包装一些在metrics中已经存在的的方法,但是这种方法需要一些参数,例如fbeta…
sklearn中的交叉验证(Cross-Validation) sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sklearn中关于交叉验证的各种用法,主要是对sklearn官方文档 Cross-validation: evaluating estimator performance进行讲解,英文水平好的建议读官方文档,里面的知识点很详细. 1. cross_val_score对数据集进行指定次数的交叉验证并为每次验证效果评测其中,sco…
决策树方法的简单调用记录一下 clf=tree.DecisionTreeClassifier() dataMat=[];labelMat=[] dataPath='D:/machinelearning data/machinelearninginaction/Ch05/testSet.txt' fr = open(dataPath) for line in fr.readlines(): # readilnes()将文件内容存在列表里 lineArr = line.strip().split()…
文本数据预处理的第一步通常是进行分词,分词后会进行向量化的操作.在介绍向量化之前,我们先来了解下词袋模型. 1.词袋模型(Bag of words,简称 BoW ) 词袋模型假设我们不考虑文本中词与词之间的上下文关系,仅仅只考虑所有词的权重.而权重与词在文本中出现的频率有关. 词袋模型首先会进行分词,在分词之后,通过统计每个词在文本中出现的次数,我们就可以得到该文本基于词的特征,如果将各个文本样本的这些词与对应的词频放在一起,就是我们常说的向量化.向量化完毕后一般也会使用 TF-IDF 进行特征…
java中List的用法和实例详解 List的用法List包括List接口以及List接口的所有实现类.因为List接口实现了Collection接口,所以List接口拥有Collection接口提供的所有常用方法,又因为List是列表类型,所以List接口还提供了一些适合于自身的常用方法,如表1所示.表1 List接口定义的常用方法及功能从表1可以看出,List接口提供的适合于自身的常用方法均与索引有关,这是因为List集合为列表类型,以线性方式存储对象,可以通过对象的索引操作对象.List接…
阅读了Python的sklearn包中随机森林的代码实现,做了一些笔记. sklearn中的随机森林是基于RandomForestClassifier类实现的,它的原型是 class RandomForestClassifier(ForestClassifier) 继承了一个抽象类ForestClassifier,也就是分类树 RandomForestClassifier有若干个参数,下面我们一个个来看: n_estimators 随机森林中树的个数 默认为10 criterion 每一次分裂的…
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 修改局部最优化条件 1.3.2 连续变量处理手段 1.4 sklearn中的决策树 2 DecisionTreeClassifier与红酒数据集 2.1 重要参数 2.1.1 criterion 2.1.2 random_state & splitter 2.1.3 剪枝参数 2.1.4 目标权重参…
一. sklearn中提供了高效的模型持久化模块joblib,将模型保存至硬盘. from sklearn.externals import joblib #lr是一个LogisticRegression模型 joblib.dump(lr, 'lr.model') lr = joblib.load('lr.model') 链接:https://www.zhihu.com/question/27187105/answer/55895472 二.pickle >>> from sklearn…
最近在使用sklearn做分类时候,用到metrics中的评价函数,其中有一个非常重要的评价函数是F1值,(关于这个值的原理自行google或者百度) 在sklearn中的计算F1的函数为 f1_score ,其中有一个参数average用来控制F1的计算方式,今天我们就说说当参数取micro和macro时候的区别 1.F1公式描述: F1-score:    2*(P*R)/(P+R)                 准确率(P): TP/ (TP+FP)                  召…