刚开始训练一个模型,自己就直接用了,而且感觉训练的数据量也挺大的,因此就没有使用正则化, 可能用的少的原因,我也就不用了,后面,训练到一定程度,accuracy不上升,loss不下降,老是出现loss=nan,输出的结果也就直接不预测,比如 训练二分类器,直接判断固定为某一类别(比如固定输出为正类),这就使得准确率为0.5,阿呀呀,怎么办,不工作哦???? 后面想,训练崩了会不会是learning_rate太大了,这时候我就改小learning_rate,同样的事情继续发生,只不过能维持迭代次数…