洛谷$P4099\ [HEOI2013]\ SAO\ dp$】的更多相关文章

正解:树形$dp$ 解题报告: 传送门$QwQ$. 考虑设$f_i$表示点$i$的子树内的拓扑序排列方案数有多少个. 发现这样不好合并儿子节点和父亲节点.于是加一维,设$f_{i,j}$表示点$i$的子树中点$i$在拓扑序中排名为$j$的拓扑序排列方案数有多少个$QwQ$ 然后说下儿子节点$x$和父亲节点$y$的合并,就枚举下点$y$前面有多少个原属于$y$的点有多少个原属于$x$的点. 若要求是$x>y$,就$f_{y,k}=\sum_{i=1}^{k} \sum_{j=k-i+1}^{siz…
题面传送门 题意: 有一个有向图 \(G\),其基图是一棵树 求它拓扑序的个数 \(\bmod (10^9+7)\) \(n \in [1,1000]\) 如果你按照拓扑排序的方法来做,那恐怕你已经想偏了.因为"求拓扑排序个数"本身就是一个 NP 问题,只能使用指数级的状压 \(dp\) 一类的算法来解决,而本题数据范围给到 \(1000\),暗示着我们要充分利用"\(G\) 的基图是一棵树"这个条件. 故可以想到树形 \(dp\).\(dp[x][i]\) 表示将…
传送门 HEOI的题好珂怕啊(各种意义上) 然后考虑树形dp,以大于为例 设$f[i][j]$表示$i$这个节点在子树中排名第$j$位时的总方案数(因为实际只与相对大小有关,与实际数值无关) 我们考虑如果从当前子树中弄出$k$个节点,其他子树中弄出$j-1$个节点,那么当前节点的大小排名就是$k+j$ 然后考虑一下,如果我们不看这个子树,根节点排在第$j$个,方案数是$f[i][j]$,如果只看此子树,此子树的根就是根节点的儿子,它在此子树中的排名可能是$1,2,...k$,那么我们就需要记录一…
P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排名为\(j\)的方案数. 难就难在转移,现在有两个树\(x\)和\(y\),其中\(x\)是父亲,\(x\)的拓扑序小于\(y\)的,从\(f[x][p1],f[y][p2]\)转移到\(newf[x][p3]\):\(x\)在原序列中排名\(p1\),新序列中\(p3\):\(y\)在原序列中排名…
P4099 [HEOI2013]SAO 我们设$f[u][k]$表示以拓扑序编号为$k$的点$u$,以$u$为根的子树中的元素所组成的序列方案数 蓝后我们在找一个以$v$为根的子树. 我们的任务就是在合并这两棵树时维护$f[u][k]$ 合并时,$v$的元素可能全在点$u$的前/后面,也可能都有. 分类讨论: 1.当有$p(p\in [0,siz[v]])$个元素插入到点$u$(拓扑序)前面时 我们知道插入后点$u$的拓扑序为$k$ 那么插入前的拓扑序即为$k-p$ ∴插入前子树$u$对应的状态…
题目描述 Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 n – 1 个对于挑战关卡的限制,诸如第 i 个关卡必须在第 j 个关卡前挑战, 或者完成了第 k 个关卡才能挑战第 l 个关卡.并且,如果不考虑限制的方向性, 那么在这 n – 1 个限制的情况下,任何两个关卡都存在某种程度的关联性.即, 我们不能把所有关卡分成两个非空且不相交的子集,使得这两个子…
题目:https://www.luogu.org/problemnew/show/P4099 结果还是看了题解才会…… 关键是状态,f[ i ][ j ] 表示 i 子树. i 号点是第 j 个出现的方案数. 合并的时候,很重要的是去枚举孩子 v 有 k 个点放在了第 i 个点前面.这样 v 可以在的位置就根据该边是 > 还是 < 而是一个前/后缀.这样就是 n2 的了. #include<iostream> #include<cstdio> #include<c…
传送门 吐槽题目标题 这个依赖关系是个树,可以考虑树型dp,设f_i表示子树i的答案 因为这是个序列问题,是要考虑某个数的位置的,所以设\(f_{i,j}\)表示子树i构成的序列,i在第j个位置的方案.转移依次合并儿子\(y\),每次枚举一个位置j,以及枚举儿子\(y\)的序列中有k个数放在插前面,可以得到\(f_{x,j+k}\leftarrow f_{x,j}*w*\binom{j-1+k}{k}*\binom{sz_x+sz_y-j-k}{sz_y-k}\),组合数即考虑插入的方式 还有一…
P4099 [HEOI2013]SAO 类型:树形 \(\text{DP}\) 这里主要补充一下 \(O(n^3)\) 的 \(\text{DP}\) 优化的过程,基础转移方程推导可以参考其他巨佬的博客(题解). 令 \(f[x][p]\) 表示在以 \(x\) 为根的子树中,\(x\) 在拓扑序排在第 \(p\) 个时的方案数. 转移中设 \(x\) 在已经合并的拓扑序中排名为 \(p_1\) ,将要合并的子树(以 \(ver\) 为根)中 \(ver\) 排名为 \(p_2\) ,合并后 \…
3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点的孩子可以排在父亲后... 为了能转移,给状态加一维,\(f[i][j]\)表示子树i,i排在第j位的方案数 然后,很像树形背包啊,转移枚举孩子子树中k个点在i之前,更新\(f[i][j+k]\) 严格做到每次合并复杂度为 **"已经合并大小*正要合并进去的大小",那么这个复杂度就是\(O…