import numpy as np   q = np.array([1,2,3,4],dtype=np.complex128)    print("数据类型",type(q))           #打印数组数据类型  print("数组元素数据类型:",q.dtype) #打印数组元素数据类型  print("数组元素总数:",q.size)      #打印数组尺寸,即数组元素总数  print("数组形状:",q.sh…
numpy数组属性查看:类型.尺寸.形状.维度   import numpy as np a1 = np.array([1,2,3,4],dtype=np.complex128) print(a1) print("数据类型",type(a1)) #打印数组数据类型 print("数组元素数据类型:",a1.dtype) #打印数组元素数据类型 print("数组元素总数:",a1.size) #打印数组尺寸,即数组元素总数 print("…
在学习数据分析时,NumPy作为最基础的数据分析库,我们能够熟练的掌握它是学习数据分析的必要条件.接下来就让我们学习该库吧. 学习NumPy库的环境: python:3.6.6 编辑器:pycharm NumPy安装:在cmd命令下,直接使用pip语句,pip install NumPy即可! NumPy是使用Python进行科学计算的基本软件包.它主要包含一下内容: 有一个强大的N维数组对象ndarray; 拥有复杂的广播功能函数: 整合C/C++和Fortran代码的工具: 线性代数.傅里叶…
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组.所以一维数组就是 NumPy 中的轴(axis),第一个轴相当于是底层数组,第二个轴是底层数组里的数组.而轴的数量——秩,就是数组的维数. 很多时候可以声明 axis.axis=0,表示沿着第 0 轴进行操作,即对每一列进行操…
# coding=utf-8import numpy as npimport random # nan是一个float类型 ,not a num不是一个数字;inf,infinite 无穷 # 轴的概念---(3,2) 3为0轴,2为1轴: (3,2,1)3为0轴,2为1轴,1为2轴 #一.读取CSV数据----csv文件内容以逗号进行分割 #t = np.loadtxt("path",delimiter=",",dtype="int") '''…
concatenate功能:数组拼接 函数定义:numpy.concatenate((a1, a2, ...), axis=0, out=None)…
1. 初识数组 import numpy as np a = np.arange(15) a = a.reshape(3, 5) print(a.ndim, a.shape, a.dtype, a.size, a.itemsize) # 2 (3, 5) int64 15 8 ndim,数组的维度数,二维数组就是 2 shape,数组在各个维度上的长度,用元组表示 dtype,数组中元素的数据类型,比如 int32, float64 等 size,数组中所有元素的总数 itemsize,数组中每…
本章主要介绍的是ndarray数组的操作和运算! 一. ndarray数组的操作: 操作是指对数组的索引和切片.索引是指获取数组中特定位置元素的过程:切片是指获取数组中元素子集的过程. 1.一维数组的索引和切片与python的列表类似: 索引: import numpy as np a = np.array([9, 8, 7, 6, 5]) print(a[2]) 7 切片:起始编号:终止编号:(不含):步长 三元素用冒号分割 import numpy as np a = np.array([9…
import numpy as np a = np.arange(8) print ('原始数组:') print (a) print ('\n') b = a.reshape(4,2) print ('修改后的数组:') print (b) numpy.ndarray.flat 是一个数组元素迭代器 import numpy as np a = np.arange(9).reshape(3,3) print ('原始数组:') for row in a: print (row) #对数组中每个…
1.ndarray.shape 这一数组属性返回一个包含数组维度的元组,它也可以用于调整数组大小 # -*- coding: utf-8 -*- import numpy as np a = np.array([[1,2,3],[4,5,6]]) print a print "Ndarray数组的维度为:" print a.shape print "调整数组大小--a.shape = (3,2)" a.shape = (3,2) print a print &quo…