RMQ问题——ST算法】的更多相关文章

·RMQ的ST算法    状态设计:        F[i, j]表示从第i个数起连续2^j个数中的最大值    状态转移方程(二进制思想):        F[i, j]=max(F[i,j-1], F[i + 2^(j-1),j-1])    查询时:        因为这个区间的长度为j - i + 1,所以我们可以取k=log2( j - i + 1),        则有:RMQ(A, i, j)=max{F[i , k], F[ j - 2 ^ k + 1, k]}.…
RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列a,回答若干询问RMQ(A,i,j)(i, j<=n),返回数列a中下标在i,j之间的最小/大值.如果只有一次询问,那样只有一遍for就可以搞定,但是如果有许多次询问就无法在很快的时间处理出来.在这里介绍一个在线算法.所谓在线算法,是指用户每输入一个查询便马上处理一个查询.该算法一般用较长的时间做预处理,待信息充足以后便可以用较少的时间回答每个查询.ST(Sparse Table…
#include<stdio.h> #include<string.h> #include<iostream> using namespace std; ; ],Min[N][],a[N]; void ST(int *a,int n)//预处理,O(NlogN) { ;i<=n;i++) Min[i][]=Max[i][]=a[i]; ;j<=;j++) { ;i<=n;i++) { <<(j-))<=n) { Max[i][j]=m…
一.相关定义 RMQ问题 求给定区间的最值: 一般题目给定许多询问区间. 常见问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值. 解决方法 暴力搜索    O(n)-O(n) 线段树 O(n)-O(q*logn) ST算法       O(n*logn)-O(1) 二.ST(Sparse Table)算法 本节介绍了一种比较高效的在线算法(ST算法)解决RMQ问题. ST算法 是一个非常有名的在线处理RMQ问题的算法: 基于D…
比赛当中,常会出现RMQ问题,即求区间最大(小)值.我们该怎样解决呢? 主要方法有线段树.ST.树状数组.splay. 例题 题目描述 2008年9月25日21点10分,酒泉卫星发射中心指控大厅里,随着指挥员一声令下,长征二号F型火箭在夜空下点火起飞,神舟七号飞船载着翟志刚.刘伯明.景海鹏3位航天员,在戈壁茫茫的深邃夜空中飞向太空,开始人类漫步太空之旅.第583秒,火箭以7.5公里/秒的速度,将飞船送到近地点200公里.远地点350公里的椭圆轨道入口.而此时,火箭的燃料也消耗殆尽,即将以悲壮的方…
目录 一.ST算法 二.ST算法の具体实现 1. 初始化 2. 求出ST表 3. 询问 三.例题 例1:P3865 [模板]ST表 例2:P2880 [USACO07JAN]平衡的阵容Balanced Lineup 一.ST算法 ST算法(Sparse Table Algorithm)是用于解决RMQ问题(区间最值问题,即Range Maximum/Minimum Question)的一种著名算法. ST算法能在复杂度为\(O(NlogN)\)的预处理后,以\(O(1)\)的复杂度在线处理序列区…
/* RMQ(Range Minimum/Maximum Query)问题: RMQ问题是求给定区间中的最值问题.当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的算法效率不够.可以用线段树将算法优化到O(logn)(在线段树中保存线段的最值).不过,Sparse_Table算法才是最好的:它可以在O(nlogn)的预处理以后实现O(1)的查询效率.下面把Sparse Table算法分成预处理和查询两部分来说明(以求最小值为例). 预处理: 预处理使用DP的思…
解决区间查询最大值最小值的问题 用 $O(N * logN)$ 的复杂度预处理 查询的时候只要 $O(1)$ 的时间  这个算法是 real 小清新了   有一个长度为 N 的数组进行 M 次查询 可以查询区间最大值和最小值 #include <iostream> #include <stdio.h> #include <math.h> #include <algorithm> #include <cstdio> using namespace…
#include <stdio.h> #include <string.h> ; int a[N]; ]; inline int min(const int &a, const int &b) { return a < b ? a : b; } /* dp[i][j] 表示以i开头的,长度为2^j的区间中的最小值 很明显dp[i][0] = a[i]; 且转移方程为 dp[i][j] = min(dp[i][j-1], dp[i+(1<<(j-1)…
前几天群里看到有人问[JSOI2008]最大数,一道很简单的问题,线段树无脑做,但是看到了动态ST,emmm,学学吧,听大佬说了下思路,还好,不难的: 四道题都可以用其他数据结构或做法代替,例如线段树,dp什么的,但这不重要,毕竟学的就是ST表,触类旁通,数据结构很多知识都是可以互通的,例如一维推广到二维,可持久化这些: 倍增思想,常见的有: 1. 2^(x1)+2^(x2)...2^(xn)=2^n (max{xi}<=logn) 对于正整数x,存在一个二进制表示方法,例如11=1011(2)…
士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比较,计算出两个人的杀敌数差值,用这种方法一方面能鼓舞杀敌数高的人,另一方面也算是批评杀敌数低的人,起到了很好的效果. 所以,南将军经常问军师小工第i号士兵到第j号士兵中,杀敌数最高的人与杀敌数最低的人之间军功差值是多少. 现在,请你写一个程序,帮小工回答南将军每次的询问吧. 注意,南将军可能询问很多…
RMQ(Range Minimum/Maximum Query)问题是求区间最值问题. 对于长度为 n 的数组 A,进行若干次查询,对于区间 [L,R] 返回数组A中下标在 [L,R] 中的最小(大)值. 可以用线段树来解决这个问题,预处理的复杂度是 O(nlogn),查询的复杂度是 O(logn). 更好的解法是ST算法.Sparse_Table算法,即稀疏表算法,这个方法可以在 O(nlogn) 的预处理后达到 O(1) 的查询代价. 这个算法非常容易实现. 定义 F[ i, k ] 表示从…
解析 ST 算法是 RMQ(Range Minimum/Maximum Query)中一个很经典的算法,它天生用来求得一个区间的最值,但却不能维护最值,也就是说,过程中不能改变区间中的某个元素的值.O(nlogn) 的预处理和 O(1) 的查询对于需要大量询问的场景是非常适用的.接下来我们就来详细了解下 ST 算法的处理过程. 比如有如下长度为 10 的数组: 1 3 2 4 9 5 6 7 8 0 我们要查询 [1, 7] 之间的最大值,如果采用朴素的线性查找,复杂度O(n),而 ST 算法却…
RMQ问题之ST算法 RMQ(Range Minimum/Maximum Query)问题,即区间最值问题.给你n个数,a1 , a2 , a3 , ... ,an,求出区间 [ l , r ]的最大值. 举例:a={ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 },求出区间[4 ,8]中的最值.(答案:8 ) 这个问题最朴素的想法是用一个循环每次比较大小,但是,当数据范围较大时,这个算法十分低效.这时我们往往使用 ST 算法解决这个问题.虽然线段树和树状数组都能解决,但…
转载自:http://kmplayer.iteye.com/blog/575725 RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在[i,j]里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题 主要方法及复杂度(处理复杂度和查询复杂度)如下: 1.朴素(即搜索) O(n)-O(n) 2.线段树(segment tree) O(n)-O(qlogn) 3.ST(实质是动态规…
题目链接:http://poj.org/problem?id=3264 典型RMQ,这道题被我鞭尸了三遍也是醉了…这回用新学的st算法. st算法本身是一个区间dp,利用的性质就是相邻两个区间的最值的最值一定是这两个区间合并后的最值,这条性质决定了这个dp子问题的重叠.可以利用这个性质预处理出这张表,只不过步长是2的幂次. 查询的时候也是如此,但是未必会精准地选中两个区间,不要紧,因为两个区间重叠的部分也会被自动算在求最值的内部.这个时候如果算的是区间和的话,要减去这一部分.(区间和的话直接用前…
参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/2633486.html 3. 代码来源yejinru 题意: 有一棵树, 按照顺序给出每条边, 再给出若干对点, 这两点之间的唯一的路( Simple path )上边权加1. 当所有对点处理完后, 按照边的输入顺序输出每条边的权. 思路: LCA问题. 最近公共祖先(Least Common Ancestors…
ST算法: ID数组下标: 1   2   3   4   5   6   7   8   9    ID数组元素: 5   7   3   1   4   8   2   9   8 1.ST算法作用: 主要应用于求区间最值上,可以把所需要求的区间极大的压缩,并且查询的复杂度为O(1).比如我们要求一段区间上的最大值,就算是用DP的思想去做,用DP[i][j]表示从i到j区间的最大值,如果需要保存数据元素N比较多的时候,比如N=10000的时候,你开个二维数组肯定超内存,如果你用线段树做的,或…
RMQ (Range Minimum/Maximum Query)问题是指: 对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在[i,j]里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题 主要方法及复杂度(处理复杂度和查询复杂度)如下: 1.朴素(即搜索) O(n)-O(n) 2.线段树(segment tree) O(n)-O(qlogn) 3.ST(实质是动态规划) O(nlogn)-O(1) 线段树方法: 线段树能在对数时间内在数组区间上进…
 概述: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值.对于一次查询,可以暴力地O(n),但是当查询次数很多的时候,这样的暴力就无法进行了.这时我们可以通过RMQ算法来解决这个问题. RMQ(ST):(关于学习RMQ的博客:框架即讲解比较详细 , 具体代码比较好) ST(Sparse Table)算法是一个非常有名的在线处理RMQ…
RMQ问题(区间最值问题Range Minimum/Maximum Query) ST算法 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列a,回答若干询问RMQ(A,i,j)(i, j<=n),返回数列a中下标在i,j之间的最小/大值.如果只有一次询问,那样只有一遍for就可以搞定,但是如果有许多次询问就无法在很快的时间处理出来.在这里介绍一个在线算法.所谓在线算法,是指用户每输入一个查询便马上处理一个查询.该算法一般用较长…
ST算法 在RMQ(区间最值问题)问题中,我了解到一个叫ST的算法,实质是二进制的倍增. ST算法能在O(nlogn)的时间预处理后,用O(1)的时间在线回答区间最值. f[i][j]表示从i位起的2^j个数中的最大(最小)数,即[i,i+2^j-1]中的最大(最小)值,从其定义中可以看出来. 下面的实现代码以最大值为例: 预处理: void preST(int len){ ;i<=len;i++) f[i][]=i; )+; ;j<m;j++) ;i<=(len-(<<j)…
<题目链接> 题目大意:给你一段序列,进行q次区间查询,每次都输出询问区间内的最小值. 解题分析: RMQ模板题,下面用在线算法——ST算法求解.不懂ST算法的可以看这篇博客  >>> #include <cstdio> #include<cstring> #include <cmath> #include <algorithm> using namespace std; ; int n,q; ]; //表示从第i个数起连续2^…
ST算法------是用来求解给定区间RMQ的最值,本文以最小值为例 ST算法分为两部分 离线预处理(nlogn):运用DP思想,用于求解区间最值,并保存到一个二维数组中. 在线查询 (O(1)):对给定区间进行分割,借助该二维数组求最值 离线预处理 该二维数组是什么? 设该二维数组为dp[n][n], 则dp[i][j]表示以i为起点,以2^j为区间长度的区间最值即表示数组[i, i+2^j-1]区间的最值. 给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 Problem DescriptionKiki likes traveling. One day she finds a magic lamp, unfortunately the genie in the lamp is not so kind. Kiki must answer a question, and then the genie will realize one of her d…
题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问题.当询问量巨大时,最朴素算法必然超时.解决RMQ比较优秀的算法有ST算法.其预处理时间复杂度为O(nlogn),询问的时间复杂度为O(1). ST的思想如下: 假设num数组中的数据从第0位开始存储. 用两个二维数组tmax,tmin分别求区间最大与最小值.ST的关键是数组区间的分割.tmax和t…
RMQ,Range Maximum/Minimum Query,顾名思义,就是询问某个区间内的最大值或最小值,今天我主要记录的是其求解方法--ST算法 相对于线段树,它的运行速度会快很多,可以做到O(log n)的预处理和O(1)的查询,不足就是无法进行区间修改,这个一会就会提及 我将从四个方面进行记录: 1.ST的算法流程 其实与DP有很大的相似性,用 a[1,2,....,n] 来记录整组数据,设 f[i,j] 代表从 a[i] 到 a[i+-1] 之间所有元素的最大值. 不难发现,其实这个…
作用:ST算法是用来求解给定区间RMQ的最值,本文以最小值为例 举例: 给出一数组A[0~5] = {5,4,6,10,1,12},则区间[2,5]之间的最值为1. 方法:ST算法分成两部分:离线预处理 (nlogn)和 在线查询(O(1)).虽然还可以使用线段树.树状链表等求解区间最值,但是ST算法要比它们更快,而且适用于在线查询. (1)离线预处理:运用DP思想,用于求解区间最值,并保存到一个二维数组中. (2)在线查询:对给定区间进行分割,借助该二维数组求最值 具体解释: (1)离线预处理…
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=47319 题目大意:给定一个序列,要求确定一个子序列,①使得该子序列中所有值都能被其中一个值整除,②且子序列范围尽可能大(r-l尽可能大). 解题思路: 对于要求1,不难发现只有min(L,R)=gcd(L,R)时才行.其中gcd是L,R范围内的最大公约数,min是L,R范围内的最小值. 对于要求2,传统思路是r-l从大到小枚举,每次确定一个(L,R)范围,进行判…
求LCA(近期公共祖先)的算法有好多,按在线和离线分为在线算法和离线算法. 离线算法有基于搜索的Tarjan算法较优,而在线算法则是基于dp的ST算法较优. 首先说一下ST算法. 这个算法是基于RMQ(区间最大最小值编号)的,不懂的能够这里学习一些 而求LCA就是把树通过深搜得到一个序列,然后转化为求区间的最小编号. 比方说给出这样一棵树. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveTk5MDA0MTc2OQ==/font/5a6L5L2T/fo…