人工智能范畴及深度学习主流框架,谷歌 TensorFlow,IBM Watson认知计算领域IntelligentBehavior介绍 ====================================== 大家现在对人工智能的期望太高了,2017是人工智能投资资本热的一年,但实际突破还是有限,估计过几年又会死掉一大批人工智能的创业公司,大家变得回归理性,调整到正常的认知水平上. 这种革命性技术不可能有资本追求快速暴利那么快见效的,几年内都很难有重大突破. 2020年再来看估计能有理性后的…
人工智能范畴及深度学习主流框架,IBM Watson认知计算领域IntelligentBehavior介绍 工业机器人,家用机器人这些只是人工智能的一个细分应用而已.图像识别,语音识别,推荐算法,NLP自然语言,广告算法,预测算法,数据挖掘,无人驾驶.医疗咨询机器人.聊天机器人,这些都属于人工智能的范畴. 人工智能现在用到的基础算法是深度学习里面的神经网络算法,具体应用场景有不同的专业算法实际上很多细分领域的,差别还是很多的机器人的对运动控制算法,图像识别算法要求比较高像alphaGo,推荐算法…
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要的是,它将深度学习的每一个细节都原原本本地展现出来,大大降低了人们学习研究和开发的难度. 一.从Caffe的开发中了解到的用户需求:深度学习的框架总会不断改变,Caffe也会有被新框架代替的一天.但是在开发Caffe的过程中,贾扬清发现大家喜欢的框架其实有着很多相似的地方,这些闪光点拥有很长的生命周…
从Theano到Lasagne:基于Python的深度学习的框架和库 摘要:最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的那样:Inceptionism.在这篇文章中,我们将讨论几个不同的深度学习框架,库以及工具. 深度学习是机器学习和人工智能的一种形式,利用堆积在彼此顶部的神经网络的多个隐藏层来尝试形成对数据更深层次的“理解”. 最近,深度神经网络以“Deep Dreams”形式在网站中如雨后春笋般出现,或是像谷歌研究原创论文中描述的…
深度学习Keras框架笔记之AutoEncoder类使用笔记 keras.layers.core.AutoEncoder(encoder, decoder,output_reconstruction=True, weights=None) 这是一个用于构建很常见的自动编码模型.如果参数output_reconstruction=True,那么dim(input)=dim(output):否则dim(output)=dim(hidden). inputshape: 取决于encoder的定义 ou…
深度学习Keras框架笔记之TimeDistributedDense类使用方法笔记 例: keras.layers.core.TimeDistributedDense(output_dim,init='glorot_uniform', activation='linear', weights=None W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint…
深度学习Keras框架笔记之Dense类(标准的一维全连接层) 例: keras.layers.core.Dense(output_dim,init='glorot_uniform', activation='linear', weights=None W_regularizer=None, b_regularizer=None, activity_regularizer=None, W_constraint=None, b_constraint=None, input_dim=None) in…
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型,常用层的Dense全连接层.Activation激活层和Reshape层.还有其他方法训练手写数字识别模型,可以基于pytorch实现的,<Pytorch实现基于卷积神经网络的面部表情识别(详细步骤)> 这篇就是基于pytorch实现,pytorch里也封装了mnist的数据集,实现方法应该类似…
一.神经网络为什么比传统的分类器好 1.传统的分类器有 LR(逻辑斯特回归) 或者 linear SVM ,多用来做线性分割,假如所有的样本可以看做一个个点,如下图,有蓝色的点和绿色的点,传统的分类器就是要找到一条直线把这两类样本点分开. 对于非线性可分的样本,可以加一些kernel核函数或者特征的映射使其成为一个曲线或者一个曲面将样本分开.但为什么效果不好,主要原因是你很难保证样本点的分布会如图所示那么规则,我们无法控制其分布,当绿色的点中混杂几个蓝色的点,就很难分开了,及时用曲线可以分开,这…
相关的代码都在Github上,请参见我的Github,https://github.com/lijingpeng/deep-learning-notes 敬请多多关注哈~~~ All in one docker 如果你不想单独安装每个深度学习组件,并且厌倦于安装过程中的各种依赖冲突等问题,那么推荐你使用Docker来搭建深度学习工作环境.下面是一个可以参考的 All in one docker 环境.几乎包含了所有的流行的深度学习框架,并且分别有CPU版本和GPU版本,与虚拟机不同的是,Dock…