首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
CTR点击率预估干货分享
】的更多相关文章
CTR点击率预估干货分享
CTR点击率预估干货分享 http://blog.csdn.net/bitcarmanlee/article/details/52138713…
Kaggle实战——点击率预估
https://blog.csdn.net/chengcheng1394/article/details/78940565 原创文章,转载请注明出处: http://blog.csdn.net/chengcheng1394/article/details/78940565 请安装TensorFlow1.0,Python3.5 项目地址: https://github.com/chengstone/kaggle_criteo_ctr_challenge- 前言点击率预估用来判断一条广告被用户点击的…
GBDT与LR融合提升广告点击率预估模型
1GBDT和LR融合 LR模型是线性的,处理能力有限,所以要想处理大规模问题,需要大量人力进行特征工程,组合相似的特征,例如user和Ad维度的特征进行组合. GDBT天然适合做特征提取,因为GBDT由回归树组成所以, 每棵回归树就是天然的有区分性的特征及组合特征,然后给LR模型训练,提高点击率预估模型(腾讯). 例如,输入样本x,GBDT模型得到两颗树tree1和tree2,遍历两颗树,每个叶子节点都是LR模型的一个维度特征,在求和每个叶子*权重及时LR模型的分类…
CTR点击率简介
点击率 简介 在搜索引擎(百度.谷歌)中输入关键词后进行搜索,然后按竞价等因素把相关的网页按顺序进行排列出来,然后用户会选择自己感兴趣的网站点击进去:把一个网站所有搜索出来的次数作为总次数,把用户点击并进入网站的次数占总次数的比例叫点击率.较低的点击率意味着,不管您的网站排名如何靠前,用户都不会点击它.这可能说明,他们不认为您的网站会满足他们的需求,或其他网站看起来更好些.提高点击率的方式之一是,查看一下您的网站标题和网页摘要在Google搜索结果中的显示效果:它们是令人信服的吗?它们能准确地代…
CTR点击率校准
1. 概述 广告CTR预估过程中,正负样本比例差距较大,需要采样,但是采用后模型训练的结果是有偏的. 2. 校准方式 用逻辑回归作为激活函数…
漫谈深度学习时代点击率预估技术进展 &&深度学习在推荐系统上的发展
转载:https://www.infoq.cn/article/XA055tpFrprUy*0UBdCb https://www.zhihu.com/question/20830906/answer/681688041…
广告点击率 CTR预估中GBDT与LR融合方案
http://www.cbdio.com/BigData/2015-08/27/content_3750170.htm 1.背景 CTR预估,广告点击率(Click-Through Rate Prediction)是互联网计算广告中的关键环节,预估准确性直接影响公司广告收入.CTR预估中用的最多的模型是LR(Logistic Regression)[1],LR是广义线性模型,与传统线性模型相比,LR使用了Logit变换将函数值映射到0~1区间 [2],映射后的函数值就是CTR的预估值.LR,逻辑…
iOS - GitHub干货分享(APP引导页的高度集成 - DHGuidePageHUD - ②)
距上一篇博客"APP引导页的高度集成 - DHGuidePageHUD - ①"的发布有一段时间了, 后来又在SDK中补充了一些新的内容进去但是一直没来得及跟大家分享, 今天来跟大家分享一下, 还是一行代码搞定APP引导页, 废话不多说直接进入主题! 如果还没来得及看上一篇博客的话, 请大家点击这里进入: iOS - GitHub干货分享(APP引导页的高度集成 - DHGuidePageHUD - ①) ; (一)老规矩先上GitHub连接,给大家节省时间 GitHub地址: ht…
iOS - GitHub干货分享(APP引导页的高度集成 - DHGuidePageHUD - ①)
好长时间没更新博客, 是时候来一波干货分享了;APP引导页话不多说每一个APP都会用到,分量不重但是不可缺少,不论是APP的首次安装还是版本的更新,首先展现给用户眼前的也就只有它了吧,当然这里讲的不是APP引导页的美化而是APP引导页的高度集成, 一行代码搞定APP引导页是不是太夸张?下面我们就来看一下吧! (一)先上GitHub连接,给大家节省时间 GitHub地址 : https://github.com/dingding3w/DHGuidePageHUD (二)效果图展示: (三)一行代…
点击率模型AUC
一 背景 首先举个例子: 正样本(90) 负样本(10) 模型1预测 正(90) 正(10) 模型2预测 正(70)负(20) 正(5)负(5) 结论: 模型1准确率90%: 模型2 准确率75% 考虑对…