PCL点云曲面重建(1)】的更多相关文章

在测量较小的数据时会产生一些误差,这些误差所造成的不规则数据如果直接拿来曲面重建的话,会使得重建的曲面不光滑或者有漏洞,可以采用对数据重采样来解决这样问题,通过对周围的数据点进行高阶多项式插值来重建表面缺少的部分, (1)用最小二乘法对点云进行平滑处理 新建文件resampling.cpp #include <pcl/point_types.h> #include <pcl/io/pcd_io.h> #include <pcl/kdtree/kdtree_flann.h>…
ICP(Iterative Closest Point迭代最近点)算法是一种点集对点集配准方法.在VTK.PCL.MRPT.MeshLab等C++库或软件中都有实现,可以参见维基百科中的ICP Algorithm Implementations. ICP算法采用最小二乘估计计算变换矩阵,原理简单且具有较好的精度,但是由于采用了迭代计算,导致算法计算速度较慢,而且采用ICP进行配准计算时,其对待配准点云的初始位置有一定要求,若所选初始位置不合理,则会导致算法陷入局部最优.PCL点云库已经实现了多种…
(1) 关于pcl::PCLPointCloud2::Ptr和pcl::PointCloud<pcl::PointXYZ>两中数据结构的区别 pcl::PointXYZ::PointXYZ ( float_x, float_y, float_z ) 区别: struct PCLPointCloud2 { PCLPointCloud2 () : header (), height (), width (), fields (), is_bigendian (), row_step (), dat…
博客转载自:https://blog.csdn.net/qq_33624918/article/details/80488590 引言 世上本没有坐标系,用的人多了,便定义了坐标系统用来定位.地理坐标系统用于定位地球上的位置,PCL点云库可视化窗口中的坐标系统用于定位其三维世界中的位置.本人刚开始接触学习PCL点云库,计算机图形学基础为零,以下内容基于自己的理解,如有错误,欢迎指出. 正文 首先介绍一下PCL点云库visualization模块中的PCLVisualizer类,它是PCL可视化3…
原文链接:http://blog.csdn.net/u012337034/article/details/38270109 简介:         在Windows下安装PCL点云库的方法大概有两种:其一,all-in-one-installer,这个只有两个版本1.5.1和1.6.0,而且顾名思义,安装方法极其简单,这里就不多做介绍了:其二,build PCL out of source,这里我们可以使用PCL的各种版本,而且随着PCL的更新,我们也可以不断的update.接下来我将会详细介绍…
Windows 8 64位系统 在VS2010 32位软件上 搭建 PCL点云库 开发环境 下载PCL For windows 软件包 到这个网站下载PCL-All-In-One Installer:http://pointclouds.org/downloads/windows.html 为什么要使用Windows MSVC 2010 (32bit)?因为我们使用的是VS2010软件,所以我们使用MSVC 2010,又因为,我用的VS2010软件是32位版的Visual Studio,所以我们…
前言:基于2D激光雷达的机器人,想让它跑自动导航,众所周知有2个比较明显的缺陷,1,那就是普通的激光雷达无法对玻璃或是镜面物体有反映; 2,机器人避障时只能对某一个平面的物体有反映,超过或者低于这个平面就不行,类似桌面等悬空的物体就无法检测. 基于这个缺陷,大部分的做法是使用廉价的超声雷达来辅助激光雷达,达到改善这个缺陷的目地.而且超声波模块很便宜,大部分在5-15元之间.测距误差在<3cm,用于机器人效果上还是不错的.之前的做法是,直接读取超声然后判断障碍物是否在安全距离,在安全距离以内就急停…
点云分割是根据空间,几何和纹理等特征对点云进行划分,使得同一划分内的点云拥有相似的特征,点云的有效分割往往是许多应用的前提,例如逆向工作,CAD领域对零件的不同扫描表面进行分割,然后才能更好的进行空洞修复曲面重建,特征描述和提取,进而进行基于3D内容的检索,组合重用等. 案例分析 用一组点云数据做简单的平面的分割: planar_segmentation.cpp #include <iostream> #include <pcl/ModelCoefficients.h> #incl…
3D点云特征描述与提取是点云信息处理中最基础也是最关键的一部分,点云的识别.分割,重采样,配准曲面重建等处理大部分算法,都严重依赖特征描述与提取的结果.从尺度上来分,一般分为局部特征的描述和全局特征的描述,例如局部的法线等几何形状特征的描述,全局的拓朴特征的描述,都属于3D点云特征描述与提取的范畴, 特征描述与提取相关的概念与算法 1.3D形状内容描述子(3D shape contexts) 利用描述子建立曲面间的对应点在3D物体识别领域有广发的应用,采用一个向量描述曲面上指定点及邻域的形状特征…
博客转载自:http://www.pclcn.org/study/shownews.php?lang=cn&id=29 什么是PCL PCL(Point Cloud Library)是在吸收了前人点云相关研究基础上建立起来的大型跨平台开源C++编程库,它实现了大量点云相关的通用算法和高效数据结构,涉及到点云获取.滤波.分割.配准.检索.特征提取.识别.追踪.曲面重建.可视化等.支持多种操作系统平台,可在Windows.Linux.Android.Mac OS X.部分嵌入式实时系统上运行.如果说…