入门训练 Fibonacci数列 时间限制:1.0s   内存限制:256.0MB 问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少. 输入格式 输入包含一个整数n. 输出格式 输出一行,包含一个整数,表示Fn除以10007的余数. 说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余…
  入门训练 Fibonacci数列   时间限制:1.0s   内存限制:256.0MB        问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少. 输入格式 输入包含一个整数n. 输出格式 输出一行,包含一个整数,表示Fn除以10007的余数. 说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的…
问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少. 输入格式 输入包含一个整数n. 输出格式 输出一行,包含一个整数,表示Fn除以10007的余数. 说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单. 样例输入 10 样例输出 55 样例输…
刚刚开始刷题的时候就栽了个大跟头,稍微记一下...... 一开始不是很理解:“我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单”这句话. 写完代码测试后才发现 当Fn 很大的时候,会超出int的表示范围, 后来才想明白为什么要这么做 import java.util.Scanner; public class Main { public static void main(String[] args) { int…
问题描述 Fibonacci数列的递推公式为:Fn=Fn-1+Fn-2,其中F1=F2=1. 当n比较大时,Fn也非常大,现在我们想知道,Fn除以10007的余数是多少. 输入格式 输入包含一个整数n. 输出格式 输出一行,包含一个整数,表示Fn除以10007的余数. 说明:在本题中,答案是要求Fn除以10007的余数,因此我们只要能算出这个余数即可,而不需要先计算出Fn的准确值,再将计算的结果除以10007取余数,直接计算余数往往比先算出原数再取余简单. 样例输入 样例输出 样例输入 样例输出…
试题 算法训练 猴子吃包子 问题描述 从前,有一只吃包子很厉害的猴子,它可以吃无数个包子,但是,它吃不同的包子速度也不同:肉包每秒钟吃x个:韭菜包每秒钟吃y个:没有馅的包子每秒钟吃z个:现在有x1个肉包,y1个韭菜包,z1个没有馅的包子:问:猴子吃完这些包子要多久?结果保留p位小数. 输入格式 输入1行,包含7个整数,分别表示吃不同包子的速度和不同包子的个数和保留的位数. 输出格式 输出一行,包含1个实数,表示吃完所有包子的时间. 样例输入 4 3 2 20 30 15 2 样例输出 22.50…
试题 算法训练 大等于n的最小完全平方数 资源限制 时间限制:1.0s 内存限制:256.0MB 问题描述 输出大等于n的最小的完全平方数. 若一个数能表示成某个自然数的平方的形式,则称这个数为完全平方数 Tips:注意数据范围 输入格式 一个整数n 输出格式 大等于n的最小的完全平方数 样例输入 71711 样例输出 71824 数据规模和约定 n是32位有符号整数 import java.util.Scanner; public class 大等于n的最小平方数 { public stati…
问题描述 在年轻的时候,我们故事中的英雄--国王 Copa--他的私人数据并不是完全安全地隐蔽.对他来说是,这不可接受的.因此,他发明了一种密码,好记又难以破解.后来,他才知道这种密码是一个长度为奇数的回文串. Copa 害怕忘记密码,所以他决定把密码写在一张纸上.他发现这样保存密码不安全,于是他决定按下述方法加密密码:他选定一个整数 X ,保证 X 不小于 0 ,且 2X 严格小于串长度.然后他把密码分成 3 段,最前面的 X 个字符为一段,最后面的 X 个字符为一段,剩余的字符为一段.不妨把…
问题描述 一个旅行家想驾驶汽车以最少的费用从一个城市到另一个城市(假设出发时油箱是空的).给定两个城市之间的距离D1.汽车油箱的容量C(以升为单位).每升汽油能行驶的距离D2.出发点每升汽油价格P和沿途油站数N(N可以为零),油站i离出发点的距离Di.每升汽油价格Pi(i=1,2,--N).计算结果四舍五入至小数点后两位.如果无法到达目的地,则输出"No Solution". 输入格式 第一行为4个实数D1.C.D2.P与一个非负整数N: 接下来N行,每行两个实数Di.Pi. 输出格式…
试题 算法提高 进攻策略加强 问题描述 植物大战僵尸这款游戏中,还有一个特别的玩儿法:玩家操纵僵尸进攻植物. 首先,僵尸有m种(每种僵尸都是无限多的),玩家可以选择合适的僵尸来进攻.使用第i种僵尸需要花费Wi资源,可以得到Pi的攻击效果.在这里,我们认为多个僵尸总的攻击效果就是他们每个攻击效果的代数和. 地图共有n行,对于第i行,最左端有若干植物,这些植物需要至少Qi的攻击才能被全部消灭.若一行上的植物全部被消灭,我们称这一行被攻破. 由于资源紧张,你只有总量为K的资源,不一定能够攻破所有行.但…