caffe 卷积层的运算】的更多相关文章

贾清扬寻找快速算法之路:https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo 卷积运算图文并茂:http://www.zhihu.com/question/28385679 注意到, (1)滤波器是有通道数的,通道数和输入特征图的通道数一样. (2)每次进行卷积: 输入参数:输入特征图的通道数,特征图尺度,滤波器尺度(滤波器通道数和输入特征图的一样),滤波器个数 输出参数:输出特征图的通道数=滤波器个数,特征图大小…
下图是jiayangqing在知乎上的回答,其实过程就是把image转换成矩阵,然后进行矩阵运算 卷积的实现在conv_layer层,conv_layer层继承了base_conv_layer层,base_conv_layer层是卷积操作的基类,包含卷积和反卷积.conv_layer层的前向传播是通过forward_cpu_gemm函数实现,这个函数在vision_layer.hpp里进行了定义,在base_conv_layer.cpp里进行了实现.forward_cpu_gemm函数调用了ca…
卷积的实现思想: 通过im2col将image转为一个matrix,将卷积操作转为矩阵乘法运算 通过调用GEMM完毕运算操作 以下两个图是我在知乎中发现的,"盗"用一下,确实非常好.能帮助理解. 參数剖析 配置參数:(从配置文件得来) kernel_h_ pad_h_ hole_h_ stride_h_ kernel_w_ pad_w_ hole_w_ stride_w_ is_1x1_:上面8个參数都为1时,该參数为true 和输入有关的參数:(从bottom得来) num_ cha…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢复减少的维数.那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文. 1. 卷积层和全连接层 在CNN提出…
在caffe中,网络的结构由prototxt文件中给出,由一些列的Layer(层)组成,常用的层如:数据加载层.卷积操作层.pooling层.非线性变换层.内积运算层.归一化层.损失计算层等:本篇主要介绍卷积层 参考 1. 卷积层总述 下面首先给出卷积层的结构设置的一个小例子(定义在.prototxt文件中) layer { name: "conv1" // 该层的名字 type: "Convolution" // 该层的类型,具体地,可选的类型有:Convolut…
1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr.如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率.一般偏置项的学习率是权值学习率的两倍. 在后面的convolution_param中,我们可以设定卷积层的特有参数. 必须设置的参数: num_output: 卷积核(filter)的个数 ke…
1.Forward_cpu conv_layer.cpp template <typename Dtype> void ConvolutionLayer<Dtype>::Forward_cpu(const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { // blobs_声明在 layer.hpp 中,vector<shared_p…
通俗易懂理解卷积 图示理解神经网络的卷积 input: 3 * 5 * 5 (c * h * w) pading: 1 步长: 2 卷积核: 2 * 3 * 3 * 3 ( n * c * k * k ) output: 2 * 3 * 3 ( c * h * w ) 如下图所示:  深入理解卷积 首先需要理解caffe里面的im2col和col2im 然后 卷积层 其实和 全连接层 差不多了 理解im2col 图示理解im2col input: 3 * 4 * 4 ( c * h * w )…
刚刚接触Tensorflow,由于是做图像处理,因此接触比较多的还是卷及神经网络,其中会涉及到在经过卷积层或者pooling层之后,图像Feature map的大小计算,之前一直以为是与caffe相同的,后来查阅了资料发现并不相同,将计算公式贴在这里,以便查阅: caffe中: TF中:…
pool层,其中ceil是向上取整函数 卷积层:…
今天来仔细讲一下卷基层和全连接层训练参数个数如何确定的问题.我们以Mnist为例,首先贴出网络配置文件: name: "LeNet" layer { name: "mnist" type: "Data" top: "data" top: "label" data_param { source: "examples/mnist/mnist-train-leveldb" backend: L…
常规的神经网络连接结构如下  当网络训练完成, 在推导的时候为了加速运算, 通常将卷积层和 batch-norm 层融合, 原理如下 \[ \begin{align*} y_{conv} &= w \cdot x + b \\ y_{bn} &= \gamma \cdot \left (\frac{y_{conv} - E[x]}{\sqrt{Var[x] + \epsilon}} \right)+\beta \\ &= \gamma \cdot \left (\frac{wx+…
一.前向计算和反向传播数学过程讲解…
视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr.如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率.一般偏置项的学习率是权值学习率的两倍. 在后面的…
今天一个同学问 卷积过程好像是对 一个通道的图像进行卷积, 比如10个卷积核,得到10个feature map, 那么输入图像为RGB三个通道呢,输出就为 30个feature map 吗, 答案肯定不是的, 输出的个数依然是 卷积核的个数. 可以查看常用模型,比如lenet 手写体,Alex imagenet 模型, 每一层输出feature map 个数 就是该层卷积核的个数. 1. 一通道单个卷积核卷积过程 2. 一通道 多个卷积核卷积过程 一个卷积核得到的特征提取是不充分的,我们可以添加…
# -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli """ import numpy as np; def ReLU(x): return max(0,x); def logistic(x): return 1/(1 + np.exp(-x)); def logistic_derivative(x): return logistic(x)*(…
CNN神经网络架构至少包含一个卷积层 (tf.nn.conv2d).单层CNN检测边缘.图像识别分类,使用不同层类型支持卷积层,减少过拟合,加速训练过程,降低内存占用率. TensorFlow加速所有不同类弄卷积层卷积运算.tf.nn.depthwise_conv2d,一个卷积层输出边接到另一个卷积层输入,创建遵循Inception架构网络 Rethinking the Inception Architecture for Computer Vision https://arxiv.org/ab…
本篇介绍卷积层的线性部分 一.与全连接层相比卷积层有什么优势? 卷积层可以节省参数,因为卷积运算利用了图像的局部相关性——分析出一小片区域的特点,加上Pooling层(汇集.汇聚),从附近的卷积结果中再采样选择一些高价值的信息,让特征向少而精的方向前进. 全连接层相当于考虑全局(整张图像)的特征 二.卷积的另一种解释 傅里叶变换:将数据从空间域的展示形式转变到频率域的形式. 理解:图像比作一道做好的菜,傅里叶变换就是找出这道菜具体 的配料及各种配料的用量. 图像中,低频信息是大体轮廓(整体),高…
如何在Caffe中配置每一个层的结构 最近刚在电脑上装好Caffe,由于神经网络中有不同的层结构,不同类型的层又有不同的参数,所有就根据Caffe官网的说明文档做了一个简单的总结. 1. Vision Layers 1.1 卷积层(Convolution) 类型:CONVOLUTION 例子 layers { name: "conv1" type: CONVOLUTION bottom: "data" top: "conv1" blobs_lr:…
原文链接: https://zhuanlan.zhihu.com/p/29119239 卷积层尺寸的计算原理 输入矩阵格式:四个维度,依次为:样本数.图像高度.图像宽度.图像通道数 输出矩阵格式:与输出矩阵的维度顺序和含义相同,但是后三个维度(图像高度.图像宽度.图像通道数)的尺寸发生变化. 权重矩阵(卷积核)格式:同样是四个维度,但维度的含义与上面两者都不同,为:卷积核高度.卷积核宽度.输入通道数.输出通道数(卷积核个数) 输入矩阵.权重矩阵.输出矩阵这三者之间的相互决定关系 卷积核的输入通道…
分类任务 CNN对于常见的分类任务,基本是一个鲁棒且有效的方法.例如,做物体分类的话,入门级别的做法就是利用caffe提供的alexnet的模型,然后把输出的全连接层稍稍修改称为自己想要的类别数,然后再根据实际需要修改网络模型(通常是瘦身).下面记录几个point. 关于crop 一般在训练的时候会利用两个手段做data augmentation,分别是mirror和crop.其中,mirror没什么特别,但是crop有一些东西我们需要了解. 在训练的时候,crop操作会在大图上随机切小图,然后…
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/52166388 以VGG_16的网络为例,在测试时,一张输入图像,在卷积层conv5_3,feature map的shape是(1,512,M,N),这样一个高维矩阵,如何输出呢? 借用numpy中的numpy.savetxt可以轻松解决: import numpy as np import caffe ... feature_conv…
原博客连接 : https://www.cnblogs.com/byteHuang/p/6959714.html CNN对于常见的分类任务,基本是一个鲁棒且有效的方法.例如,做物体分类的话,入门级别的做法就是利用caffe提供的alexnet的模型,然后把输出的全连接层稍稍修改成为自己想要的类别数,然后再根据实际需要修改网络模型(通常是瘦身).下面记录几个Point. 关于Crop 一般在训练的时候会利用两个手段做data augmentation, 分别是mirror和crop.其中,mirr…
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值.如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小.  b)对于池化层,按照池化标准把输入张量缩小. c)对于全连接层,按照普通网络的前向传播计算. 2,CNN反向传播的不同之处: 首先要注意的是…
卷积层 1. 1d/2d/3d卷积 Dimension of Convolution 卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加 卷积核:又称为滤波器,过滤器,可认为是某种模式,某种特征. 卷积过程类似于用一个模版去图像上寻找与它相似的区域,与卷积核模式越相似,激活值越高,从而实现特征提取,所以在深度学习当中,可以把卷积核看成是特征提取器的检测器 AlexNet卷积核可视化,发现卷积核学习到的是边缘,条纹,色彩这一些细节模式 卷积维度:一般情况下,卷积核在几个维度上滑动,就是几…
VS2013配置Caffe卷积神经网络工具(64位Windows 7)--准备依赖库 2014年4月的时候自己在公司就将Caffe移植到Windows系统了,今年自己换了台电脑,想在家里也随便跑跑,本来也装了Ubuntu可以很方便的配置好,无奈在家的风格是"娱乐的时候抽空学习",所以移植到Windows还是很有必要的.但是,公司禁止将公司内部资料带出,很多地方又都忘记了,周末磨了一天终于移植完,本篇为记录将Caffe移植至Windows7 x64系统下的一些关键步骤.第一步先看看这老些…
想要尝试一下将resnet18最后一层的全连接层改成卷积层看会不会对网络效果和网络大小有什么影响 1.首先先对train.py中的更改是: train.py代码可见:pytorch实现性别检测 # model_conv.fc = nn.Linear(fc_features, 2)这是之前的写法 model_conv.fc = nn.Conv2d(fc_features, 2, 1) print(model_conv.fc) 但是运行的时候出错: 1) RuntimeError: Expected…
在tf1.0中,对卷积层重新进行了封装,比原来版本的卷积层有了很大的简化. 一.旧版本(1.0以下)的卷积函数:tf.nn.conv2d conv2d( input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, name=None ) 该函数定义在tensorflow/python/ops/gen_nn_ops.py. 参数: input: 一个4维Tensor(N,H,W,C). 类型必须是以下几种类型之…
卷积层的非线性部分 一.ReLU定义 ReLU:全称 Rectified Linear Units)激活函数 定义 def relu(x): return x if x >0 else 0 #Softplus为ReLU的平滑版 二.传统sigmoid系激活函数 Sigmoid与人的神经反应很相似,在很多浅层模型上发挥巨大作用 传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid.Tanh-Sigmoid)被视为神经网络的核心所在. 从数学上来看,非线性的Sigm…
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Cheese_pop/article/details/52024980 DATA crop:截取原图像中一个固定patch layers { name: "data" type: DATA top: "data" top: "label" data_param { source: "../data/ImageNet/imagenet-train&…