0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量.这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词. 举个栗子, “话筒”表示为 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...] “麦克”表示为 [0 0 0 0 0 0 0 0 …
http://spaces.ac.cn/archives/4122/   关于词向量讲的很好 上边的形式表明,这是一个以2x6的one hot矩阵的为输入.中间层节点数为3的全连接神经网络层,但你看右边,不就相当于在$w_{ij}$这个矩阵中,取出第1.2行,这不是跟所谓的字向量的查表(从表中找出对应字的向量)是一样的吗?事实上,正是如此!这就是所谓的Embedding层,Embedding层就是以one hot为输入.中间层节点维数为字向量维数的全连接层(每一列对应一个中间层节点)!而这个全连…
原文:http://www.zhihu.com/question/21714667 4 个回答 83赞同反对,不会显示你的姓名 皮果提 刘鑫.莫教授要养猫.Starling Niohuru 等人赞同 要将自然语言交给机器学习中的算法来处理,通常需要首先将语言数学化,词向量就是用来将语言中的词进行数学化的一种方式. 一种最简单的词向量方式是 one-hot representation,就是用一个很长的向量来表示一个词,向量的长度为词典的大小,向量的分量只有一个 1,其他全为 0, 1 的位置对应…
Distributed Representation 这种表示,它最早是 Hinton 于 1986 年提出的,可以克服 one-hot representation 的缺点. 其基本想法是: 通过训练将某种语言中的每一个词映射成一个固定长度的短向量(当然这里的“短”是相对于 one-hot representation 的“长”而言的),将所有这些向量放在一起形成一个词向量空间,而每一向量则为该空间中的一个点,在这个空间上引入“距离”,则可以根据词之间的距离来判断它们之间的(词法.语义上的)相…
原文地址:https://www.jianshu.com/p/b2da4d94a122 一.概述 本文主要是从deep learning for nlp课程的讲义中学习.总结google word2vector的原理和词向量的训练方法.文中提到的模型结构和word2vector的代码实现并不一致,但是可以非常直观的理解其原理,对于新手学习有一定的帮助.(首次在简书写技术博客,理解错误之处,欢迎指正) 二.词向量及其历史 1. 词向量定义   词向量顾名思义,就是用一个向量的形式表示一个词.为什么…
转自:https://blog.csdn.net/fendouaini/article/details/79821852 1 词向量 在NLP里,最细的粒度是词语,由词语再组成句子,段落,文章.所以处理NLP问题时,怎么合理的表示词语就成了NLP领域中最先需要解决的问题. 因为语言模型的输入词语必须是数值化的,所以必须想到一种方式将字符串形式的输入词语转变成数值型.由此,人们想到了用一个向量来表示词组.在很久以前,人们常用one-hot对词组进行编码,这种编码的特点是,对于用来表示每个词组的向量…
假设每个词对应一个词向量,假设: 1)两个词的相似度正比于对应词向量的乘积.即:$sim(v_1,v_2)=v_1\cdot v_2$.即点乘原则: 2)多个词$v_1\sim v_n$组成的一个上下文用$C$来表示,其中$C=\sum_{i=1}^{n}v_i$.$\frac{C}{|C|}$称作上下文C的中心向量.即加和原则: 3)在上下文$C$中出现单词$A$的概率正比于能量因子$e^{-E(A,C)},where E=-A\cdot C$.即能量法则(可参看热统中的配分函数). 因此:…
深度学习掀开了机器学习的新篇章,目前深度学习应用于图像和语音已经产生了突破性的研究进展.深度学习一直被人们推崇为一种类似于人脑结构的人工智能算法,那为什么深度学习在语义分析领域仍然没有实质性的进展呢? 引用三年前一位网友的话来讲: “Steve Renals算了一下icassp录取文章题目中包含deep learning的数量,发现有44篇,而naacl则有0篇.有一种说法是,语言(词.句子.篇章等)属于人类认知过程中产生的高层认知抽象实体,而语音和图像属于较为底层的原始输入信号,所以后两者更适…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…
本文是讲述怎样使用word2vec的基础教程.文章比較基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ 官网Python下载地址:http://radimrehurek.com/gensim/models/word2vec.html 1.简介 參考:<Word2vec的核心架构及其应用 · 熊富林.邓怡豪,唐晓晟 · 北邮2015年>           <Word2vec的工作原理及应用探究 · 周练 ·…