RMQ问题 - ST表的简单应用】的更多相关文章

2017-08-26 22:25:57 writer:pprp 题意很简单,给你一串数字,问你给定区间中最大值减去给定区间中的最小值是多少? 用ST表即可实现 一开始无脑套模板,找了最大值,找了最小值,分别用两个函数实现,实际上十分冗余 所以TLE了 之后改成一个函数中同时处理最大值和最小值,就可以了 AC代码如下: /* @theme:poj 3264 @writer:pprp @declare:ST表(sparse table)稀疏表,用动态规划的思想来解决RMQ问题: @date:2017…
士兵杀敌(三) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5 描述 南将军统率着N个士兵,士兵分别编号为1~N,南将军经常爱拿某一段编号内杀敌数最高的人与杀敌数最低的人进行比较,计算出两个人的杀敌数差值,用这种方法一方面能鼓舞杀敌数高的人,另一方面也算是批评杀敌数低的人,起到了很好的效果. 所以,南将军经常问军师小工第i号士兵到第j号士兵中,杀敌数最高的人与杀敌数最低的人之间军功差值是多少. 现在,请你写一个程序,帮小工回答南将军每次的询问吧. 注意,南将军可能询问很多…
ST表 这是一种神奇的数据结构,用nlogn的空间与nlongn的预处理得出O(1)的区间最大最小值(无修) 那么来看看这个核心数组:ST[][] ST[i][j]表示从i到i+(1<<j)的范围内的最大/最小值 那么来看看代码吧. #include <cstdio> #include <algorithm> using namespace std; ][],n; void makeST() { ;j<=;j++) { ;i+(<<j)-<=n;…
思路: (我也不知道这是不是正解) ST表预处理出来原数列的两点之间的min 再搞一个动态开节点线段树 节点记录ans 和标记 lazy=-1 当前节点的ans可用  lazy=0 没被覆盖过 else 区间覆盖 push_up的时候要注意好多细节,, 数组尽量往大开 //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; ; ],lson…
ST表 \(\text{ST}\) 表是用于解决可重复贡献问题的数据结构. 可重复贡献问题:区间按位和.区间按位或.区间 \(\gcd\) .区间最大.区间最小等满足结合律且可重复统计的问题. 模板预处理:(以区间最大值为例) void pre_work() { for(int i=2;i<=n;i++) lg2[i]=lg2[i/2]+1; pow2[0]=1; for(int i=1;i<=lg2[n];i++) pow2[i]=pow2[i-1]*2; for(int i=1;i<…
#include<iostream> #include<cstdio> #include<cmath> using namespace std; int N, M, a[100009], l, r, st[100009][20]; inline int read() { int s=0, w=1; char ch=getchar(); while( ch<'0' || ch>'9' ){ if(ch=='-') w=-1; ch=getchar(); } w…
此算法可用来处理区间最值问题,预处理时间为O(nlogn),查询时间为O(1) 此算法主要基于倍增思想,用以数组st[i][j]表示从第i个元素开始向后搜2的j次方的最值 可用递推的方式求得:st[i][j]=min/max(st[i][j-1],st[i+1<<(j-1)][j-1]) 下面的模板以区间最大值为例 #include<iostream>#include<cstdio>#include<cstring>#include<string>…
洛谷3865 #include<cstdio> #include<algorithm> #include<cmath> using namespace std; ; ],n,m,l,r; void read(int &k){ k=; ; char c=getchar(); ),c=getchar(); +c-',c=getchar(); k*=f; } int main(){ read(n); read(m); ;i<=n;i++) read(f[i][]…
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq10^5\). \(Solution\) 一个集合直径的两端点,在被划分为两个集合后一定是两个集合直径的四个端点中的两个. 即假设将\(S\)分为两个集合后,另外两个集合的直径的两端点分别为a,b和c,d,那么\(S\)集合的直径的两端点一定是a,b,c,d中的两个. 证明类似树的直径. 所以信息可…
ST表,稀疏表,用于求解经典的RMQ问题.即区间最值问题. Problem: 给定n个数和q个询问,对于给定的每个询问有l,r,求区间[l,r]的最大值.. Solution: 主要思想是倍增和区间dp. 状态:dp[i][j] 为闭区间[i,i+2^j-1]的最值. 这个状态与转移方程的关系很大,即闭区间的范围涉及到了转移方程的简便性. 转移方程:dp[i][j]=max(dp[i][j-1],dp[i+2^(j-1)][j-1]). 这是显然的,但这里有个细节:第一个项的范围为[i,i+2^…
Definition ST表是一种用于处理静态RMQ问题(无修改区间最值问题)的最快数据结构,书写方便使用简单效率便捷.其中其预处理复杂度为O(nlogn),查询复杂度为O(1).总时间复杂度为O(nlogn).常数远小于树状数组.线段树等毒瘤数据结构. 事实上,ST表不能叫做ST表.因为T本身就代表table= = ST表在预处理时采用倍增以及DP思想,即设f[i][j]为i向右2j-1个坐标的最大值.在DP时以j为阶段进行转移. 在查询时,由于2的(被查询区间长度的对数的两倍)个单位(即22…
ST 表是个好东西,虽然前些天 ldq 学长已经讲完啦,但是那天他讲了那么多,让智商受限的我完全没有全部接受,选择性的扔掉了一部分(其实不舍的扔,记不住QAQ). ST 表最简单的应用就是查询区间最大值(或着最小值,这里以最大值为例),它(单纯 ST 表自己)需要你先修改之后(如果有修改要求),得到一个确切数组之后,经过 O ( nlogn ) 的预处理,然后就可以做到 O ( 1 ) 查询啦. ST 表的预处理操作: 对于一个有 n 个数的 a [ n ] ,如果需要用一个二维数组 f [ n…
我当时知道ST表可以 \(O(1)\) 求 LCA 的时候是极为震惊的,可以在需要反复使用 LCA 的时候卡常使用. ST表!用于解决 RMQ问题 ST表 我可能写得不好,看专业的 怎么实现? 考虑把求 LCA 转换为 RMQ问题.我们对于树求一遍欧拉序,就是那个回溯也会记录的那个.我们处理出每个数第一次在欧拉序中出现的位置,欧拉序上每个位置的深度,以及欧拉序上每个位置出现的点的编号.这些信息都可以在一次 \(dfs\) 中求出.然后不难发现在回溯过程中加入的点是之前遍历的点的祖先,由此也不难推…
\(0.\) RMQ问题 P1816 人话翻译 给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值. 其中\(m,n\leq10^5\) \(1.\) 暴力做法 很显然,暴力做法就是便历 \(\max\limits_{l\leq i\leq r}a_i\) .这个做法最坏时间复杂度将会高达\(O(n^2)\).很显然,这对于\(1e5\)的数据范围要炸 \(2.\) 正解 线段树 如果不知道什么是线段树,请点击这里 线段树 对于这种区间信…
2017-08-26 21:44:45 writer:pprp RMQ问题就是区间最大最小值查询问题: 这个SparseTable算法构造一个表,F[i][j] 表示 区间[i, i + 2 ^ j -1]的最大或者最小值 ST分为两个部分 1.nlogn的预处理 预处理主要用到了动态规划,二分区间每个区间长度为 2 ^ (j -1)找到一个递推关系: F[i][j] = min(F[i][j - 1],F[i + (1 << (j - 1))][j - 1]); 2.查询部分更为巧O(1)得…
传送门:http://poj.org/problem?id=3264 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 66241   Accepted: 30833 Case Time Limit: 2000MS Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in…
解题关键:rmq模板题,可以用st表,亦可用线段树等数据结构 log10和log2都可,这里用到了对数的换底公式 类似于区间dp,用到了倍增的思想 $F[i][j] = \min (F[i][j - 1],F[i + 1 <  < (j - 1)][j - 1])$ #include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<cmath&…
$RMQ$问题:给定一个长度为$N$的区间,$M$个询问,每次询问$[L_i,R_i]$这段区间元素的最大值/最小值. $RMQ$的高级写法一般有两种,即为线段树和$ST$表. 本文主要讲解一下$ST$表的写法.(以区间最大值为例) $ST$表:一种利用$dp$思想求解区间最值的倍增算法. 定义:$f(i,j)$表示$[i,i+2^{j}-1]$这段长度为$2^{j}$的区间中的最大值. 预处理:$f(i,0)=a_i$.即$[i,i]$区间的最大值就是$a_i$. 状态转移:将$[i,j]$平…
RMQ(Range Minimum/Maximum Query)问题指的是一类对于给定序列,要求支持查询某区间内的最大.最小值的问题.很显然,如果暴力预处理的话复杂度为 \(O(n^2)\),而此类问题数据又往往很大,不仅会爆时间,数组也存不下.我们需要一种能够 \(O(n\log n)\) 甚至 \(O(n)\) 预处理的数据结构,这便是ST表. ST表(Sparse Table,应译为S表)是一种可以以 \(O(n\log n)\) 的优秀复杂度预处理出静态区间上的最大.最小值的算法,其核心…
RMQ RMQ (Range Minimum Query),指求区间最小值.普通的求区间最小值的方法是暴力. 对于一个数列: \[ A_1,~ A_2,~ A_3,~ \cdots,~ A_n \] 对于一个给定的区间\([l, ~r], ~1≤ l ≤r ≤ n\),\(\min \{A_l, A_{l + 1}, \cdots,A_r\}\)的计算就是RMQ问题. 此解法为\(\text{Sparse-Table}\)解法,简称\(ST\)表. 预处理:预处理为对数据进行\(n\log n\…
RMQ问题: RMQ(Range Minimum/Maximum Query),区间最值查询.对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大值. RMQ问题可以用线段树和ST表解决. 线段树:查询复杂度O(log n) 可以修改数列中的值 ST表: 查询复杂度 O(1) 无法修改数列中的值,是在线算法 其实ST表就是个动态规划 核心思想:倍增 对于dp[i][j] ,其含义为以i为起点,长度为2^j这个区间的最大值 转移方程就是把这…
RMQ即Range Minimum/Maximun Query,中文意思:查询一个区间的最小值/最大值 比如有这样一个数组:A{3 2 4 5 6 8 1 2 9 7},然后问你若干问题: 数组A下标2~7区间最小的值是多少?       最小值是(1) 数组A下标3~6区间最小的值是多少?       最小值是(4) 数组A下标1~10区间最小的值是多少?      最小值是(1) ...... 专业术语:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标…
ST表 ST表是一种解决RMQ问题的强有力工具, 可以做到O(nlogn)预处理,O(1)查询. st[i][j] 表示区间 [i, i + 2 ^ j - 1] 的最大值. 初值 st[i][0] = a[i]. 状态转移 st[i][j] = max(st[i][j - 1],  st[i + 2 ^ ( j - 1)][j - 1]).. 初始化: inline void init(){ for(int i = 1; (1 << i) <= n; i ++) for(int j =…
题面:P2880 [USACO07JAN]平衡的阵容Balanced Lineup 题解: ST表板子 代码: #include<cstdio> #include<cstring> #include<iostream> #define max(a,b) ((a)>(b)?(a):(b)) #define min(a,b) ((a)<(b)?(a):(b)) using namespace std; ,max_log=,maxlog=,inf=<<…
离线RAQ时,预处理为O(n*lgn),查询为O(1)的算法,比较有意思的一种算法 放个模板在这可以随时看 //ST表(离线) //预处理 O(n*lgn) , 查询 O(1) #include <iostream> #include <stdio.h> using namespace std; #define MX 10005 int n; int a[MX]; ]; // st[i][j] 是第 i 个数为左端点长为 2^j 区间的最大值 int lgn[MX]; //lgn[…
Glad You Came Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 1489    Accepted Submission(s): 629 Problem Description Steve has an integer array a of length n (1-based). He assigned all the e…
Summer again! Flynn is ready for another tour around. Since the tour would take three or more days, it is important to find a hotel that meets for a reasonable price and gets as near as possible! But there are so many of them! Flynn gets tired to loo…
例题:https://www.acwing.com/problem/content/1272/ ST表类似于dp. 定义st[i][j]表示以i为起点,长度位2^j的一段区间,即[ i , i + 2^j - 1 ]. 而这个区间又可以被拆分为[i,i+2^(j-1)-1]+[ i + 2 ^ ( j - 1 ) , i + 2 ^ j - 1 ]这两个区间可以这样表示st[i][j-1]和st[i+(1<<(j-1))][j-1] 所以 st[i][j] = m(st[i][j-],st[i…
发现自己学的一直都是假的ST表QWQ. ST表 ST表的功能很简单 它是解决RMQ问题(区间最值问题)的一种强有力的工具 它可以做到$O(nlogn)$预处理,$O(1)$查询最值 算法 ST表是利用的是倍增的思想 拿最大值来说 我们用$Max[i][j]$表示,从$i$位置开始的$2^j$个数中的最大值,例如$Max[i][1]$表示的是$i$位置和$i+1$位置中两个数的最大值 那么转移的时候我们可以把当前区间拆成两个区间并分别取最大值(注意这里的编号是从$1$开始的) 查询的时候也比较简单…
ST表类似树状数组,线段树这两种算法,是一种用于解决RMQ(Range Minimum/Maximum Query,即区间最值查询)问题的离线算法 与线段树相比,预处理复杂度同为O(nlogn),查询时间上,ST表为O(1),线段树为O(nlogn) st表的主体是一个二维数组st[i][j],表示需要查询的数组的从下标i到下标i+2^j - 1的最值,这里以最小值为例 预处理函数: ];//原始输入数组 ][];//st表 void init(int n) { ; i < n; i++) st…