RF的优缺点】的更多相关文章

随机森林有什么优点,如: a. 对于很多数据集表现良好,精确度比较高: b. 不容易过拟合: c. 可以得到变量的重要性排序: d. 既能处理离散型数据,也能处理连续型数据,且不需要进行归一化处理:   (美团被深入问到) e. 能够很好的处理缺失数据: f. 容易并行化 关于材料再说句题外话,我之前是个资料收集整理爱好者,总是在努力充实自己的资料库,总是担心遗漏任何有用的材料. 但是后来才逐渐意识到,资料求精不求多,存在脑子里面的叫知识,存在硬盘里叫文档.…
决策树意义: 分类决策树模型是表示基于特征对实例进行分类的树形结构.决策树可以转换为一个if_then规则的集合,也可以看作是定义在特征空间划分上的类的条件概率分布. 它着眼于从一组无次序.无规则的样本数据(概念)中推理出决策树表示形式的分类规则.假设这里的样本数据应该能够用"属性-结论".决策树学习旨在构建一个与训练数据拟合很好,并且复杂度小的一个可以自动对数据进行分类的树形结构,是树形结构的知识表示,可以直接转换为分类规则.因为从可能的决策树中直接选取最优决策树是NP完全问题,现实…
一.简介 RF = Bagging + Decision Tree 随机:数据采样随机,特征选择随机 森林:多个决策树并行放在一起 几个误区: 不是每棵树随机选择特征,而是每一个结点都随机选择固定数目的特征 采样.样本数量为N,采样数量也为N,但是采取的是有放回的采样(bootstrap). 组合算法.训练结束之后,对新数据进行预测的时候,会让新数据在所有得到的M个决策树上进行预测,最后对结果进行平均或者进行投票.最早的算法是投票:每个树对每一类投票,sklearn的算法是对各个树进行了平均取结…
1.什么是随机采样? Bagging可以简单的理解为:放回抽样,多数表决(分类)或简单平均(回归): Bagging的弱学习器之间没有boosting那样的联系,不存在强依赖关系,基学习器之间属于并列生成.它的特点在“随机采样”. 随机采样(bootsrap)就是从我们的训练集里面采集固定个数的样本,但是每采集一个样本后,都将样本放回.也就是说,之前采集到的样本在放回后有可能继续被采集到.对于我们的Bagging算法,一般会随机采集和训练集样本数m一样个数的样本.这样得到的采样集和训练集样本的个…
1. 随机森林优缺点 随机森林(RF)是Bagging的一个扩展变体.RF在以决策树为基分类器进行集成的基础上,进一步在决策树的训练过程中引入了随机属性选择. Bagging就是对数据集训练多个基分类器,然后将基分类器得到的结果进行投票表决作为最终分类的结果.基分类器在构建过程中需要尽可能保证训练出的基分类器有比较大的差异性,这就需要用对训练样本集进行采样,不同的基分类器训练不同的样本集.但是样本过少会导致基分类器的性能较差,我们可以通过使用相互有交叠的采样子集. 那么,随机森林有什么优点呢?…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布,学习思想包括ID3,C4.5,CART(摘自<统计学习方法>). 1.2 Bagging :基于数据随机重抽样的集成方法(Ensemble methods),也称为自举汇聚法(boostrap aggregating),整个数据集是…
摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 内容: 1.算法概述 1.1 决策树(DT)是一种基本的分类和回归方法.在分类问题中它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布,学习思想包括ID3,C4.5,CART(摘自<统计学习方法>). 1.2 Bagging :基于数据随机重抽样的集成方法(Ensemble methods),也称为自举汇聚法(boostrap aggregating),整个数据集是…
一.问题引入 在做接口自动化时随着案例增多,特别是流程类案例增多,特别是asp.net的webform类型的项目,再加上数据库校验也比较耗时,导致RF执行案例时间越来越长,就遇到这样一个问题,705个接口测试案例(案例包含流程类案例,一个流程类案例可能包含3.4个单个案例,单个案例又都包含登录),通过Jenkins在单机上要跑13小时30分钟,而且目前还不是整个项目所有的接口测试案例,案例个数还在继续增长,一个系统假如有3.4000个接口那如果按照这个速度可能得跑一两天,这是很可怕的. 二.解决…
Xcode 插件优缺点对照(推荐 20 款插件) 2016-01-22 06:16 编辑: lansekuangtu 分类:iOS开发 来源:董铂然 的博客 28 13527 /XCode/" target="_blank" style="margin:0px 10px 0px 0px; padding:3px 8px; color:rgb(255,255,255); text-decoration:none; display:inline-block; backg…
1.RF 原理 用随机的方式建立一个森林,森林里面有很多的决策树,随机森林的每一棵决策树之间是没有关联的.在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类. 2.RF 优缺点 优点:(1)在数据集上表现良好,两个随机性的引入,使得随机森林不容易陷入过拟合.(2)在当前的很多数据集上,相对其他算法有着很大的优势,两个随机性的引入,使得随机森林具有很好的抗噪声能力(3…