OpenCV---其他形态学操作】的更多相关文章

#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread("f:/images/qq/kaibi.png"); Mat gray, binary; cvtColor(src, gray, COLOR_BGR2GRAY); threshold…
#include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main(int argc, char** argv) { Mat src = imread("f:/images/shuang001.jpg"); Mat gray, binary; cvtColor(src, gray, COLOR_BGR2GRAY); threshol…
形态学操作是指基于形状的一系列图像处理操作,包括膨胀,腐蚀,二值化,开运算,闭运算,顶帽算法,黑帽算法,形态学梯度等,最基本的形态学操作就是膨胀和腐蚀. 一.膨胀 首先需要明确一个概念,膨胀和腐蚀都是针对于图像中较亮的区域而言的,膨胀就是亮的区域变多了,而腐蚀就是暗的区域变多了. 膨胀的功能主要有消除噪声,分割出独立的图像元素,在图像操作的时候,有时候需要对图像中的某些形状进行检测,而这些形状相互连接在一起,不好分开检测,膨胀就能切开这些形状(很小的连接位置),或者图像中有很小块的黑斑,或许是相…
转自:OpenCV 教程 另附:计算机视觉:算法与应用(2012),Learning OpenCV(2009) 平滑图像:滤波器 平滑 也称 模糊, 是一项简单且使用频率很高的图像处理方法.平滑处理的用途有很多, 但是在本教程中我们仅仅关注它减少噪声的功用 (其他用途在以后的教程中会接触到).平滑处理时需要用到一个 滤波器 .最常用的滤波器是 线性 滤波器.不妨把 滤波器 想象成一个包含加权系数的窗口,当使用这个滤波器平滑处理图像时,就把这个窗口滑过图像. 归一化滤波器 (Normalized…
图象腐蚀与形态学操作 opencv 1. 通过调用库函数实现图像的腐蚀.膨胀: 2. 通过设置结构元素.元素大小.形态学操作类型实现对图象的形态学操作. 源码(VS2017+OpenCV 4.0) #include <iostream> #include <opencv2/opencv.hpp> #include <opencv2/core.hpp> #include <opencv2/highgui.hpp> #include <opencv2/im…
图像形态学主要从图像内提取分量信息,该分量信息通常对表达图像的特征具有重要意义.例如,在车牌号码识别中,能够使用形态学计算其重要特征信息,在进行识别时,只需对这些特征信息运算即可.图像形态学在目标视觉检测.医学图像处理.信息压缩提取等领域都有重要的应用.接下来,这篇随笔介绍使用OpenCV进行图像处理的第七章 图像形态学操作. 7  图像形态学操作 形态学操作主要包括:腐蚀.膨胀.开运算.闭运算.形态学梯度运算.顶帽运算(礼帽运算).黑帽运算等操作.其中,腐蚀和膨胀是形态学中最基本的运算,其他方…
图像的形态学操作有基本的腐蚀和膨胀操作和其余扩展形态学变换操作(高级操作)-----开运算,闭运算,礼帽(顶帽)操作,黑帽操作...(主要也是为了去噪声,改善图像) 形态学操作都是用于处理二值图像(其实也可以用于彩图,只是结果....)的,1位白,0位黑... 主要是基于卷积核的操作,设立一个指定大小的核,然后用这个核的中心点(默认的,可以修改)分别在每个像素点对照一遍,如果有与周围的值不同的改变值(1为0,0为1)就是腐蚀操作, 将周围像素的最大值赋给全部像素为膨胀操作,其他高级操作都是在腐蚀…
形态学操作 开操作- open 闭操作- close 形态学梯度- Morphological Gradient 顶帽 – top hat 黑帽 – black hat 开操作- open 先腐蚀后膨胀 可以去掉小的对象,假设对象是前景色,背景是黑色 闭操作-close 先膨胀后腐蚀(bin2) 可以填充小的洞(fill hole),假设对象是前景色,背景是黑色 形态学梯度- Morphological Gradient 膨胀减去腐蚀 又称为基本梯度(其它还包括-内部梯度.方向梯度) 顶帽 –…
在上一篇深度分析与调优讨论中,我们介绍了高斯模糊,灰度化和Sobel算子.在本文中,会分析剩余的定位步骤. 根据前文的内容,车牌定位的功能还剩下如下的步骤,见下图中未涂灰的部分. 图1 车牌定位步骤 我们首先从Soble算子分析出来的边缘来看.通过下图可见,Sobel算子有很强的区分性,车牌中的字符被清晰的描绘出来,那么如何根据这些信息定位出车牌的位置呢? 图2 Sobel后效果 我们的车牌定位功能做了个假设,即车牌是包含字符图块的一个最小的外接矩形.在大部分车牌处理中,这个假设都能工作的很好.…
这个部分是<opencv-tutorials.pdf>的部分,这部分也是几大部分中例子最多的,其实这个教程的例子都很不错,不过有些看得出来还是c接口的例子,说明例子有些年头了,其实在"opencv/sources/samples"有不同的接口的例子,看完这个教程,下一步就可以看看里面的不同的代码来学习,只是没有说明而已,不过在<opencv-refman.pdf>中会说到某某例子可以参考,也说明这里面的例子有很多都是为了解释这个手册中的一些函数的用法的.做完这些…