用OpenCV实现Otsu算法】的更多相关文章

算法的介绍 otsu法(最大类间方差法,有时也称之为大津算法)使用的是聚类的思想,把图像的灰度数按灰度级分成2个部分,使得两个部分之间的灰度值差异最大,每个部分之间的灰度差异最小,通过方差的计算来寻找一个合适的灰度级别来划分. 所以可以在二值化的时候采用otsu算法来自动选取阈值进行二值化.otsu算法被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响.因此,使类间方差最大的分割意味着错分概率最小. http://blog.csdn.net/kfqcome/article…
主要讲解OTSU算法实现图像二值化:    1.统计灰度级图像中每个像素值的个数. 2.计算第一步个数占整个图像的比例. 3.计算每个阈值[0-255]条件下,背景和前景所包含像素值总个数和总概率(就是分别计算背景和前景下第一步和第二步的              和). 4.比较第三步前景和背景之间方差,找到最大的一个确定为选定的阈值. OTSU源码: 1 #include <opencv2/opencv.hpp> #include <iostream> #include <…
简介: 大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出.从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景图像的类间方差最大(何为类间方差?原理中有介绍). OTSU算法 OTSU算法也称最大类间差法,有时也称之为大津算法,由大津于1979年提出,被认为是图像分割中阈值选取的最佳算法,计算简单,不受图像亮度和对比度的影响,因此在数字图像处理上得到了广泛的应用.它是按图像的灰度特性,将图像分成背景和前景两…
大津法是一种图像灰度自适应的阈值分割算法,是1979年由日本学者大津提出,并由他的名字命名的.大津法按照图像上灰度值的分布,将图像分成背景和前景两部分看待,前景就是我们要按照阈值分割出来的部分.背景和前景的分界值就是我们要求出的阈值.遍历不同的阈值,计算不同阈值下对应的背景和前景之间的类内方差,当类内方差取得极大值时,此时对应的阈值就是大津法(OTSU算法)所求的阈值. 何为类间方差? 对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于前景的像素点数占整幅图像的比例记为ω0,其平均…
原文 OpenCV实现KNN算法 K Nearest Neighbors 这个算法首先贮藏所有的训练样本,然后通过分析(包括选举,计算加权和等方式)一个新样本周围K个最近邻以给出该样本的相应值.这种方法有时候被称作"基于样本的学习",即为了预测,我们对于给定的输入搜索最近的已知其相应的特征向量. class CvKNearest : public CvStatModel //继承自ML库中的统计模型基类 { public: CvKNearest();//无参构造函数 virtual ~…
在图像处理实践中,将灰度图转化为二值图是非经常见的一种预处理手段. 在Matlab中,能够使用函数BW = im2bw(I, level)来将一幅灰度图 I.转化为二值图. 当中.參数level是一个介于0~1之间的值,也就是用于切割图像的阈值.默认情况下,它可取值是0.5. 如今问题来了,有没有一种依据图像自身特点来自适应地选择阈值的方法呢?答案是肯定的!我们今天就来介绍当中最为经典的Otsu算法(或称大津算法).该算法由日本科学家大津展之(Nobuyuki Otsu)于1979年提出.这个算…
OTSU算法学习   OTSU公式证明 1 otsu的公式如下,如果当前阈值为t, w0 前景点所占比例 w1 = 1- w0 背景点所占比例 u0 = 前景灰度均值 u1 = 背景灰度均值 u = w0*u0 + w1*u1  全局灰度均值 g = w0(u0-u)*(u0-u) + w1(u1-u)*(u1-u) = w0*(1 – w0)*(u0 - u1)* (u0 - u1) 目标函数为g, g越大,t就是越好的阈值.为什么采用这个函数作为判别依据,直观是这个函数反映了前景和背景的差值…
java 在centos6.5+eclipse环境下调用opencv实现sift算法,代码如下: import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfKeyPoint; import org.opencv.highgui.Highgui; import org.opencv.features2d.*; public class ExtractSIFT{ public static…
这几天继续在看Lowe大神的SIFT神作,看的眼花手脚抽筋.也是醉了!!!!实在看不下去,来点干货.我们知道opencv下自带SIFT特征检测以及MATCH匹配的库,这些库完全可以让我们进行傻瓜似的操作.但实际用起来的时候还不是那么简单.下文将对一个典型的基于OPENCV的SIFT特征点提取以及匹配的例程进行分析,并由此分析详细的对OPENCV中SIFT算法的使用进行一个介绍. OPENCV下SIFT特征点提取与匹配的大致流程如下: 读取图片->特征点检测(位置,角度,层)->特征点描述的提取…
http://blog.csdn.net/c80486/article/details/52499919 系列文章: 用OpenCV实现Photoshop算法(一): 图像旋转 用OpenCV实现Photoshop算法(二): 图像剪切 用OpenCV实现Photoshop算法(三): 曲线调整 用OpenCV实现Photoshop算法(四): 色阶调整 用OpenCV实现Photoshop算法(五): 亮度对比度调整 用OpenCV实现Photoshop算法(六): 变为黑白图像 用OpenC…