MT【173】齐次消元单变量】的更多相关文章

已知$x\ge0,x^2+(y-2)^2=1,W=\dfrac{3x^2+2\sqrt{3}xy+5y^2}{x^2+y^2}$,求$W$的最值. 提示:$x\ne0$时,设$t=\dfrac{y}{x}$由图知道$t\ge\sqrt{3},W=5+\dfrac{2\sqrt{3}t-2}{1+t^2}\in(5,6]$$x=0$时,显然$W=5$,故$W\in[5,6]$…
传送门 题意 一个人在数轴上来回走,以pi的概率走i步i∈[1, m],给定n(数轴长度),m,e(终点),s(起点),d(方向),求从s走到e经过的点数期望 分析 设E[x]是人从x走到e经过点数的期望值,显然对于终点有:E[e] = 0 一般的:\[E[x] = \sum_i^m((E[x+i]+i) * p[i])\] (走i步经过i个点,所以是E[x+i]+i) 建立模型:高斯消元每个变量都是一个互不相同的独立的状态,由于人站在一个点,还有一个状态是方向!例如人站在x点,有两种状态向前.…
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵. 在讲算法前先介绍些概念 矩阵的初等变换 矩阵的初等变换又分为矩阵的初等行变换和矩阵的初等列变换.矩阵的初等行变换和初等列变换统称为初等变换.另外:分块矩阵也可以定义初等变换. 等价 定义:如果B可以由A经过一系列初等变换得到,则称矩阵A与B称为等价 初等行变换 定义:所谓数域P上矩阵的初等行变换是指下列3种变换: 1)以P中一个非零的数乘矩阵的某一行 2)把矩阵的某一行的c倍加到另一行,这里…
虽说这题看大家都改得好快啊,但是为什么我感觉这题挺难.(我好菜啊) 所以不管怎么说那群切掉这题的大佬是不会看这篇博客的所以我要开始自嗨了. 这题,明显是树dp啊.只不过出题人想看你发疯,询问二合一了而已. 对于给出了a数组要求b数组的询问,想象一下怎么求. 你先yy一棵树,我懒得画了...父节点叫fa,子节点叫s 那么想一想对于s来说它的答案来自与哪里. 首先是它的子树,设以s为根的子树的a值和为w[s],而子树对它的总贡献是son[s] 那么这样理解:所有子树里的点都需要先走到s的直接儿子们,…
高斯消元 其实开始只是想搞下线性基,,,后来发现线性基和高斯消元的关系挺密切就一块儿在这儿写了好了QwQ 先港高斯消元趴? 这个算法并不难理解啊?就会矩阵运算就过去了鸭,,, 算了都专门为此写个题解还是详细港下趴,,, 就每次选定一个未知数,通过加减消元使得所有方程中只有一个方程中它的系数不为0 然后这么一直做下去最后就会得到一个,这样的东西 a是系数b是方程右边的那个玩意儿 然后就输出b/a就成了,,还挺简单的是不是x就模拟了一个加减消元 然后就放代码趴 #include<bits/stdc+…
题目3 : 图像算子 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在图像处理的技术中,经常会用到算子与图像进行卷积运算,从而达到平滑图像或是查找边界的效果. 假设原图为H × W的矩阵A,算子矩阵为D × D的矩阵Op,则处理后的矩阵B大小为(H-D+1) × (W-D+1).其中: B[i][j] = ∑(A[i-1+dx][j-1+dy]*Op[dx][dy]) | (dx = 1 .. D, dy = 1 .. D), 1 ≤ i ≤ H-D+1, 1 ≤…
EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 6246 Description In an extended version of the game Lights Out, is a puzzle with 5 rows of 6 buttons each (the actual puzzle has 5 rows of 5 buttons eac…
ACdrea  1217---高斯消元 Description The following problem is somehow related to the final stage of many famous integer factorization algorithms involved in some cryptoanalytical problems, for example cracking well-known RSA public key system. The most po…
PS. 看了大神的题解,发现确实可以用m个未知数的高斯消元做.因为确定了第一行的情况,之后所有行的情况都可以根据第一行推. 这样复杂度直接变成O(m*m*m) 知道了是高斯消元后,其实只要稍加处理,就可以解决带模的情况. 1 是在进行矩阵行变化的时候,取模. 2 最后的除法用逆元.(因为a[i][i]必定非0 且小于模数) 然后对于无穷多解的情况,只需要将那些列全为0的未知数定义一个固定值.(这里设的是0)其余操作不变. #include <iostream> #include <cst…
这道题是我第一次使用高斯消元解决期望类的问题,首发A了,感觉爽爽的.... 不过笔者在做完后发现了一些问题,在原文的后面进行了说明. 中文题目,就不翻大意了,直接给原题: 一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分数.当小Z 到达N号顶点时游走结束,总分为所有获得的分数之和. 现在,请你对这M条边进行编号,使得小Z获得的总分的期望值最小.…