svd我认识我机器学习里面最扯淡的玩意了.尼玛.老实说,好多机器学习的书老是在扯svd有多高端,然后看了netflix电影推荐大赛,哇塞,冠军队就是用svd+做的.然后狠狠的下载了所有他们的论文,硬是没看明白.后来居然对svd有恐惧感.感觉这个玩意好高端似的.你看他啊,它能提高预测精度,它好像是万能的,能降维,什么比赛有事没事都要扯扯svd.后来看Kaggle上的比赛,有个walmat仓储量预测大赛,也是对数据先用svd预处理. 回去下载了好多svd论文看,搞了好久都没搞明白.他们都是说自己如何…
机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题…
机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
注:在<SVD(奇异值分解)小结 >中分享了SVD原理,但其中只是利用了numpy.linalg.svd函数应用了它,并没有提到如何自己编写代码实现它,在这里,我再分享一下如何自已写一个SVD函数.但是这里会利用到SVD的原理,如果大家还不明白它的原理,可以去看看<SVD(奇异值分解)小结 >,或者自行百度/google. 1.SVD算法实现 1.1 SVD原理简单回顾 有一个\(m \times n\)的实数矩阵\(A\),我们可以将它分解成如下的形式 \[ A = U\Sigm…
注:奇异值分解在数据降维中有较多的应用,这里把它的原理简单总结一下,并且举一个图片压缩的例子,最后做一个简单的分析,希望能够给大家带来帮助. 1.特征值分解(EVD) 实对称矩阵 在理角奇异值分解之前,需要先回顾一下特征值分解,如果矩阵\(A\)是一个\(m\times m\)的实对称矩阵(即\(A = A^T\)),那么它可以被分解成如下的形式 \[ A = Q\Sigma Q^T= Q\left[ \begin{matrix} \lambda_1 & \cdots & \cdots &…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题第28篇文章,我们来聊聊SVD算法. SVD的英文全称是Singular Value Decomposition,翻译过来是奇异值分解.这其实是一种线性代数算法,用来对矩阵进行拆分.拆分之后可以提取出关键信息,从而降低原数据的规模.因此广泛利用在各个领域当中,例如信号处理.金融领域.统计领域.在机器学习当中也有很多领域用到了这个算法,比如推荐系统.搜索引擎以及数据压缩等等. SVD简介 我们假设原始数据集矩阵D是一个m…
GistBox 用简便的方式来组织和管理代码片段.你的代码会保存到云端进行备份,再也不用担心迷失在杂乱的代码片段中.GistBox 是建立在标准的 HTML5 技术基础上.在旅途中或在办公室,你都可以使用 GistBox. 您可能感兴趣的相关文章 Metronic – 基于 Bootstrap 响应式后台管理模板 HTML Inspector – 帮助你编写高质量 HTML 代码 Web 开发人员必备的随机 JSON 数据生成工具 Selectize – 用于标签和下拉列表功能的选择控件 Pur…
前些日子谢亮兄弟丢了一个链接在群里,我当时看了下,觉得这种装逼题目没什么意思,因为每种语言都有不同的实现方法,你怎么能说你的方法一定比其他语言的好,所以要好的思路 + 好的语言特性运用才能让代码升华. 题目如下:<[拉勾专场]抛弃简历!让代码说话!> FizzBuzzWhizz 你是一名体育老师,在某次课距离下课还有五分钟时,你决定搞一个游戏.此时有100名学生在上课.游戏的规则是: 1. 你首先说出三个不同的特殊数,要求必须是个位数,比如3.5.7. 2. 让所有学生拍成一队,然后按顺序报数…
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的 文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在 大部分人的印象中,往往是停留在纯粹的数学计算中.而且线性代数或者矩阵论里面,也很少讲任何跟特征值与…
转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实…