传送门 显然的贪心题啊...考试没调出来10pts滚了妙的一啊 直接分别用堆贪心出洗完第iii件衣服需要的最少时间和晾完第iii件衣服需要的最少时间. 我们设第一个算出来的数组是aaa,第二个是bbb,然后令ccc数组是bbb的一个任意排列. 于是要求minminmin{maxmaxmax{a1+c1,a2+c2,...al+cla_1+c_1,a_2+c_2,...a_l+c_la1​+c1​,a2​+c2​,...al​+cl​}} 里面东西跟排序不等式很像啊 ,于是aaa正序bbb倒序加起…
这道题的贪心好迷啊~我们对于两个过程进行单独贪心,然后再翻转一个,把这两个拼起来.先说一下单独贪心,单独贪心的话就是用一个堆,每次取出最小的,并且把这个最小的加上他单次的,再放进去.这样,我们得到的结果,是对于某些洗衣机,不停地洗,然后把这些洗衣机的时间,混在一起,排个序,由于对于每个洗衣机,如果被用到,那么他就会被不停地用,如果我们稍作改动,就一定会是用小的换来大的,所以这样最优.我们把两个拼起来为什么是对的呢.对于两个单独的答案,最优的无疑是,翻转之后拼起来,因为如果不是这样,也就是说进行了…
传送门 先处理出每一件衣服最早什么时候洗完,堆+贪心即可 然后同样处理出每件衣服最早什么时候烘干 然后倒序相加取最大值 # include <bits/stdc++.h> using namespace std; typedef long long ll; const int maxn(1e5 + 5); int l, n, m, d[maxn], w[maxn]; ll ans, tim1[maxn * 10], tim2[maxn * 10]; priority_queue < pa…
题目   点这里看题目. 分析   首先考虑只有洗衣机的情况.我们可以想到,当前洗衣任务结束越早的洗衣机应该被先用,因此可以用堆来动态维护.   再考虑有烘干机的情况.很显然,越晚洗完的衣服应该越早烘干.因此我们可以按照处理洗衣机的方法,给衣服按照结束洗衣时间从大到小分配烘干机.   用一个堆对洗衣机和烘干机各维护一次,时间\(O(k\log_2n)\). 代码 #include <queue> #include <cstdio> using namespace std; type…
题目传送门 传送门 题目大意 有一个位置数列,给定$n$条线索,每条线索从某一个位置开始,一直向左或者向右走,每遇到一个还没有在线索中出现的数就将它加入线索,问最小的可能的数列长度. 依次从左到右考虑每一位上填的数. 用$f_{L, a, R, b, S}$表示正在满足向右走的线索是$L$,前$a$个字符已经满足,正在满足向左走的线索是$R$,前$b$个字符还没有满足,还未被考虑的线索集合是$S$. 主要有两种转移: 填下一个字符 如果两个线索下一个要填的字符相同,那么直接填 如果不同则还需判断…
题目传送门 唯一的传送门 题目大意 给定$n$个串,每个串只包含 ' .问是否可能任意两个不同的串不满足一个是另一个的前缀. 2-sat的是显然的. 枚举每个通配符填0还是1,然后插入Trie树. 对于Trie的每个点在2-sat中建点. 如果其中一个点被选择,那么它祖先和所有后继的结束点都不能选.(然后逆否命题连边) 对于一个包含通配符的串,通配符替换为0以及通配符替换为1的否命题等价,同样,通配符替换为1以及通配符替换为0的否命题等价(连双向边). 对于一个不包含通配符的串,直接它到的节点的…
这个题的搜索可以打到48分…… #include <cstdio> #include <cstring> #include <algorithm> ; bool must[N],in[N]; int cnt; int n,a[N][N],q[N],b[N]; inline bool judge(int len,int lim){ return lim-len>=cnt; } inline bool check(int len){ register int i,j,…
记得之前做过几道2-sat裸体,以及几道2-sat前缀优化建图,这道题使用了前缀树上前缀树优化建图.我们暴力建图肯定是n^2级别的,那么我们要是想让边数少点,就得使用一些骚操作.我们观察我们的限制条件,不就是选了一个点,那么这个点的前缀都不能选吗(选了一个点,以他为前缀的的点也不能选,这个限制条件可以通过前面那个限制条件体现出来,所以说观察到问题本质是一样的,可以简化我们的问题).那么我们就可以在Trie上建图,使得选择一个点,那么他的前缀点都必须不能选,就可以了.但是对于一个点上有多个点的情况…
[LOJ 6031] 「雅礼集训 2017 Day1」字符串 题意 给定一个长度为 \(n\) 的字符串 \(s\), \(m\) 对 \((l_i,r_i)\), 回答 \(q\) 个询问. 每个询问会给定一个长度为 \(k\) 的字符串 \(w\) 以及一对 \(L,R\), 求所有满足 \(i\in [L,R]\) 的 \(w[l_i:r_i]\) 在 \(s\) 中的出现次数之和. \(n,m,k,q\le 1\times 10^5\), \(\sum |w|\le 1\times 10…
[LOJ 6029] 「雅礼集训 2017 Day1」市场 题意 给定一个长度为 \(n\) 的数列(从 \(0\) 开始标号), 要求执行 \(q\) 次操作, 每次操作为如下四种操作之一: 1 l r c 给 \([l,r]\) 区间内的值全部加上 \(c\). 2 l r d 给 \([l,r]\) 区间内的值全部除以 \(d\), 向下取整. 3 l r 求 \([l,r]\) 区间内的最小值. 4 l r 求 \([l,r]\) 区间内的值之和. \(n,q\le 1\times 10…
[LOJ 6030] 「雅礼集训 2017 Day1」矩阵 题意 给定一个 \(n\times n\) 的 01 矩阵, 每次操作可以将一行转置后赋值给某一列, 问最少几次操作能让矩阵全为 1. 无解输出 -1. \(n \le 1000\). 题解 首先手玩下样例就可以发现一个非常虾皮的明显性质: 因为操作是赋值而不是取或, 于是一定是先让某一行都为 1 然后用这一行去染所有不是全 1 的列. 对于构造一个全 1 的行, 如果行号为 \(k\), 那么显然是用某一行的第 \(k\) 列上的 1…
#6046. 「雅礼集训 2017 Day8」爷 题目描述 如果你对山口丁和 G&P 没有兴趣,可以无视题目背景,因为你估计看不懂 …… 在第 63 回战车道全国高中生大赛中,军神西住美穗带领大洗女子学院的大家打败了其他所有高中,取得了胜利,当然也就不用废校了.然而一群战车道的领导表示他们是口胡的,废校还是要废的. 军神的母亲西住志穗怒斥废校男,为了不造个大新闻,废校男承诺如果大洗学院可以打败大学队,就不用废校.(有种 OI 选手 PK ACM 选手的感觉呀)然而实力差距太大了,大洗女子学院最强…
题目描述 人的一生不仅要靠自我奋斗,还要考虑到历史的行程. 历史的行程可以抽象成一个 01 串,作为一个年纪比较大的人,你希望从历史的行程中获得一些姿势. 你发现在历史的不同时刻,不断的有相同的事情发生.比如,有两个人同时在世纪之交 11 年的时候上台,同样喜欢与洋人谈笑风生,同样提出了以「三」字开头的理论. 你发现,一件事情可以看成是这个 01 串的一个前缀,这个前缀最右边的位置就是这个事情的结束时间. 两件事情的相似度可以看成,这两个前缀的最长公共后缀长度. 现在你很好奇,在一段区间内结束的…
loj 爆搜? 爆搜! 先分析一下,因为我们给出的是一个排列,然后让\(i\)给\(p_i\)连边,那么我们一定会得到若干个环,最后要使得所有点度数为1,也就是这些环有完备匹配,那么最后一定全是偶环.对于一个环,我们选点一定是隔一个选一个,所以每个环只有\(2\)种选法.如果我们先考虑长度为\(2\)的环,这种环选编号小的点显然更优,因为他要的是括号序列,左括号在越前面越好;剩下的环一定长度\(\ge 4\),那么这种环个数不超过\(\frac{100}{4}=25\)个,枚举每种环的选择情况即…
loj 注意到每次询问串长度都是给定的,并且询问串长\(k*\)询问次数\(q<10^5\),所以这里面一个东西大的时候另一个东西就小,那么考虑对较小的下功夫 如果\(k\le \sqrt{n}\),那么可以\(O(k^2)\)暴力枚举询问串的每一个子串,然后在\(S\)的sam找到这个子串对应的点,算出出现次数,并且乘上在区间\([a,b]\)中这个子串询问的出现次数.找到子串对应的点为了方便,可以依次让询问串的某个前缀在sam上匹配,然后按长度从大到小枚举前缀的后缀,从匹配位置开始倍增跳父亲…
我可以大喊一声这就是个套路题吗? 首先看到LCP问题,那么套路的想到SAM(SA的做法也有) LCP的长度是它们在parent树上的LCA(众所周知),所以我们考虑同时统计多个点之间的LCA对 树上问题的话请出万能算法--LCT(这里准确的说应该是实链剖分),我们只需要不停地access就可以找到LCA了 然后怎么统计最后的答案,区间询问用莫队?这里的两个信息(最大值,边的虚实)显然都不能撤销 我们直接大力离线,从左往右把点一个个扔到LCT上,然后对于每个点开一个树状数组维护后缀最大值,由于这里…
题意 题目链接 Sol 只会后缀数组+暴躁莫队套set\(n \sqrt{n} \log n\)但绝对跑不过去. 正解是SAM + set启发式合并 + 二维数点/ SAM + LCT 但是我只会第一种qwq 首先一个性质是两个前缀的最长公共后缀就是他们再parent树上的LCA的len 那么我们考虑每个LCA的贡献. 把询问离线下来按右端点排序,对于当前点的子树中的点有一个显然的性质. 若存在四个点\(l, x, y, r\)满足\(l < x < y < r\),那么显然\(l, r…
我可以大喊一声这就是个思博题吗? 首先如果你能快速把握题目的意思后,就会发现题目就是让你求出每个点要成为树的重心至少要嫁接多少边 先说一个显然的结论,重心的答案为\(0\)(废话) 然后我们考虑贪心处理,每次肯定要砍断以重心为根的树的大小尽量大的子树 那么至少要砍多少呢,至少\(\frac{1}{2}\)要到吧,然后就是思博的感性理解了--这是每个点要砍的边的上界 假如我们总有一种方案可以使嫁接满足条件(兴许更多,但是这个不会证啊) 那么怎么判断是否达到上界呢,很简单,先取了必要的然后看剩下的有…
题意 链接 Sol 第一次做在二分图上博弈的题..感觉思路真是清奇.. 首先将图黑白染色. 对于某个点,若它一定在最大匹配上,那么Bob必胜.因为Bob可以一直沿着匹配边都,Alice只能走非匹配边.到最后一定是Alice不能移动. 否则Alice必胜.这个我不会证,但是又举不出反例来qwq.手玩了几个数据发现Alice总会有一种方法走某个非匹配边干掉Bob. 那么如何找不一定在最大匹配上的点呢?首先求出一个最大匹配,结论是从所有不在最大匹配上的点开始dfs,通过交叉边(目标点的匹配边)走到点都…
题意 链接 Sol 神仙题+神仙做法%%%%%%%% 我再来复述一遍.. 首先按照\(y\)坐标排序,然后维护一个扫描线从低处往高处考虑. 一个连通块的内状态使用两个变量即可维护\(ans\)表示联通块内的最大答案,\(f\)表示联通块内\(k=1\)的数量 若当前的水超过了当前的挡板,那么将当前联通块和下一个位置所在的联通块合并. 若是一个\(k=0\)的操作,则一定满足. 若是\(k=1\)的操作,那么就将\(f++\),然后更新一下答案. #include<bits/stdc++.h>…
题意 链接 Sol \(10^5\)次询问每次询问\(10^5\)个区间..这种题第一感觉就是根号/数据分治的模型. \(K\)是个定值这个很关键. 考虑\(K\)比较小的情况,可以直接暴力建SAM,\(n^2\)枚举\(w\)的子串算出现次数.询问用个\(n^2\)的vector记录一下每次在vector里二分就好. \(K\)比较大的情况我没想到什么好的做法,网上的做法复杂度也不是很好.. 然后写了个广义SAM + 暴力跳parent就过了.. 不过这题思想还是很好的 #include<bi…
题意 链接 Sol 自己都不知道自己怎么做出来的系列 不难观察出几个性质: 最优策略一定是先把某一行弄黑,然后再用这一行去覆盖不是全黑的列 无解当且仅当无黑色.否则第一个黑色所在的行\(i\)可以先把第\(i\)列弄出一个黑色,接下来第\(i\)列的黑色可以把第\(i\)行全部弄成黑色. 然后直接算出把每一行弄黑的步数取个min就行了. 代码里面有注释. #include<bits/stdc++.h> #define Pair pair<int, int> #define MP(x…
题意 链接 Sol 势能分析. 除法是不能打标记的,所以只能暴力递归.这里我们加一个剪枝:如果区间内最大最小值的改变量都相同的话,就变成区间减. 这样复杂度是\((n + mlogn) logV\)的. 简单的证明一下:如果没有加的话,每个节点会被除至多log次, 总会除4nlogn次,每次区间加会恢复log个点的势能函数,这样总递归次数就是\(nlog^2n\). 下传标记的时候别忘了把min和max都更新一下 #include<bits/stdc++.h> #define Pair pai…
题面 传送门 题解 转化为\(dfs\)序之后就变成一个区间加,区间查询\(k\)小值的问题了,这显然只能分块了 然而我们分块之后需要在块内排序,然后二分\(k\)小值并在块内二分小于它的元素--一个根号两个\(\log\)很悬啊-- 每次操作的值加上的值不超过\(len\)一看就有阴谋 因为每次加上的值很小,我们分块的时候保证一个块内的最大值和最小值之差不超过某个常数,这样我们就可以做一个前缀和了,之后二分的时候不需要再在块内二分,可以减少一个\(\log\) 还有就是可能要定期重构块,具体细…
题面 传送门 题解 要不是因为数组版的\(LCT\)跑得实在太慢我至于去学指针版的么--而且指针版的完全看不懂啊-- 首先有两个结论 1.与一个点距离最大的点为任意一条直径的两个端点之一 2.两棵树之间连一条边新树直径的端点一定是第一棵树直径的两个端点和第二颗树直径的两个端点这四个点之二 然后用并查集维护联通块的直径就行了.注意因为这里强制在线,所以得用\(LCT\)来维护距离 并不建议看代码因为这个代码非常难懂哪怕我加满注释您都不一定看得懂 //minamoto #include<bits/s…
题面 传送门 题解 首先可以用一个矩形去套这个多边形,那么我们只要枚举这个矩形的左下角就可以枚举完所有多边形的位置了 我们先对每一个\(x\)坐标开一个\(bitset\),表示这个\(x\)坐标里哪些\(y\)坐标处有苍蝇.然后再处理出矩形中哪些位置会被覆盖,这个同样可以枚举\(x\)坐标,然后对于所有线段,如果它穿过这个\(x\)坐标,就用一个\(stack\)存起来,然后把所有\(stack\)里的\(sort\)一下,乱搞就好了(具体可以看代码) 注意只有一条线段完全穿过\(x\)才有可…
题面 传送门 题解 这么简单一道题我考试的时候居然只打了\(40\)分暴力? 如果我们把每个点的\(a_i\)记为\(deg_i-1\),其中\(deg_i\)表示有\(deg_i\)个数的\(A_i\)是\(i\),那么很明显所有数的\(a_i\)之和为\(0\) 于是,必然存在一个点\(k\),满足从\((k,k+1)\)把环断掉之后,且以\(k+1\)为开头,整个数列的前缀和不小于\(0\),也就是说精灵永远不会跨过\(k\)去找别的侏儒打架 这个\(k\)的话,只要找到前缀和最小值的地方…
题面 传送门 题解 我的做法似乎非常复杂啊-- 首先最长上升子序列长度就等于把它反过来再接到前面求一遍,比方说把\(2134\)变成\(43122134\),实际上变化之后的求一个最长上升子序列和方案数就是答案了 最长上升子序列随便求求,主要是这个方案数很麻烦啊--我的做法是对每一个长度开一个动态开点线段树,然后每次在对应的长度里二分跑前缀和 其实这里完全不用动态开点线段树的,直接把权值离散一下然后一棵线段树就够了,跑得飞快 其实这里连线段树都不需要直接树状数组就可以维护前缀最大值和方案之和了…
题目描述 Miranda 生活的城市有 \(N\) 个小镇,一开始小镇间没有任何道路连接.随着经济发现,小镇之间陆续建起了一些双向的道路但是由于经济不太发达,在建设过程中,会保证对于任意两个小镇,最多有一条路径能互相到达.有的时候 Miranda 会从某个小镇开始进行徒步旅行,每次出发前,她都想选择一个她能到达的最远的小镇作为终点,并且她在行走过程中是不会走回头路的,为了估算这次旅行的时间,她会需要你告诉她这次旅行的时间会是多少呢?可以假设通过每条道路都需要单位时间,并且 Miranda 不会在…
$ \color{#0066ff}{ 题目描述 }$ 给出一个长度为 \(n\) 宽度为 \(1\) ,高度无限的水箱,有 \(n-1\) 个挡板将其分为 \(n\) 个 \(1 - 1\) 的小格,然后向每个小格中注水,水如果超过挡板就会溢出到挡板的另一边,这里的水是满足物理定律的(在无挡板阻拦的情况下会向低处流),现在有 \(m\) 个条件 \((i,j,k)\),表示从左到右数的第 \(i\) 个格子中,在高度为 \(y+0.5\) 的地方是否有水, \(k=1\) 表示有水,\(k=0\…