反Nim博弈】的更多相关文章

Be the Winner Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4939    Accepted Submission(s): 2724 Problem Description Let's consider m apples divided into n groups. Each group contains no more…
John Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 6162    Accepted Submission(s): 3584 Problem Description Little John is playing very funny game with his younger brother. There is one big bo…
Alice and Bob are playing game of Misère Nim. Misère Nim is a game playing on k piles of stones, each pile containing one or more stones. The players alternate turns and in each turn a player can select one of the piles and can remove as many stones…
原文地址:https://blog.csdn.net/xuejye/article/details/78975900 在尼姆博奕中取完最后一颗糖的人为赢家,而取到最后一颗糖为输家的就是反尼姆博奕.这道题就反尼姆 博奕的模型.在尼姆博奕中判断必胜局面的条件是所有堆石子数目相异或不等于0 .  而在反尼姆博奕中判断必胜局 面的条件有两点,满足任意一点先手都能取胜,即必胜局面. 第一种判别方法:  15ms 1:各堆石子数目异或结果不等于0,且存在有石子数目大于1的石子堆. 2:各堆石子数目异或结果等…
瞎扯 \(orzorz\) \(cdx\) 聚聚给我们讲了博弈论.我要没学上了,祝各位新年快乐.现在让我讲课我都不知道讲什么,我会的东西大家都会,太菜了太菜了. 马上就要回去上文化课了,今明还是收下尾再稍微开一波多项式吧,不然万一文化课上自闭了被锤自闭了站教室外面没课听了还能有事情做--所以把这两天学到的东西稍微整理一下,以后再慢慢完善好了. 发现博弈论的题目还是 \(Nim\) 博弈和其他的比较多.这次就先简单整理一些 \(Nim\) 博弈的类型和东西吧,主要是以某博客里搜来的一串题目为引导.…
Nim博弈 题目 有n堆物品,两人轮流取,每次取某堆中不少于1个,先取完者胜. 分析 经典问题,该问题的策略也成为了许多问题的基础. 要判断游戏的胜负只需要异或运算就可以了,有以下结论: $a_1 \ xor \ a_2\ xor ...  \ xor a_n \neq 0$,必胜态 $a_1 \ xor \ a_2\ xor ...  \ xor a_n =  0$,必败态 为什么是异或运算呢? //下面这段话为口胡 异或运算能保证必败态只能转移到必胜态,也就是说,当异或和为0时,从某一堆中任…
1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结论:先手胜当且仅当(1)所有堆石子数都为1且游戏的SG值为0,(2)存在某堆石子数大于1且游戏的SG值不为0.证明:(1)若所有堆石子数都为1且SG值为0,则共有偶数堆石子,故先手胜.(2) i)只有一堆石子数大于1时,我们总可以对该堆石子操作,使操作后石子堆数为奇数且所有堆得石子数均为1 ii)有…
1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形.设糖果数为1的叫孤独堆,糖果数大于1的叫充裕堆,设状态S0:a1^a2^..an!=0&&充裕堆=0,则先手必败(奇数个为1的堆,先手必败).S1:充裕堆=1,则先手必胜(若剩下的n-1个孤独堆个数为奇数个,那么将那个充裕堆全部拿掉,否则将那个充裕堆拿得只剩一个,这样的话先手必胜).T0:a1…
ZOJ 3591 Nim(Nim博弈) 题目意思是说有n堆石子,Alice只能从中选出连续的几堆来玩Nim博弈,现在问Alice想要获胜有多少种方法(即有多少种选择方式). 方法是这样的,由于Nim博弈必胜的条件是所有数的抑或值不为0,证明见  点击  ,所以答案就转化为原序列有多少个区间的亦或值为0,用n*(n+1) / 2 减去这个值就可以了. 而求有多少个区间的亦或值为0,实际上就是求对于亦或值的前缀nim[i],满足nim[i] == nim[j] 的对数,这时只要对nim数组排序就可以…
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1022 反Nim游戏裸题.详见论文<组合游戏略述——浅谈SG游戏的若干拓展及变形>. 分析 #include <bits/stdc++.h> using namespace std; inline ;;;+c-';return x*=k;} int T,n,x,t,a; int main(){ read(T); while(T--){ read(n); x=t=; while(n…