题意 题目链接 Sol 反演套路题? 不过最后一步还是挺妙的. 套路枚举\(d\),化简可以得到 \[\sum_{T = 1}^m (\frac{M}{T})^n \sum_{d \ | T} d \mu(\frac{T}{d})\] 后面的显然是狄利克雷卷积的形式,但是这里\(n \leqslant 10^{11}\)显然不能直接线性筛了 设\(F(n) = n, f(n) = \phi(n)\) 根据欧拉函数的性质,有\(F(n) = \sum_{d \ | n} f(d)\) 反演一下 \…
题意:求\(\sum_{i_1=1}^m\sum_{i_2=1}^m...\sum_{i_n=1}^mgcd(i_1,i_2,...i_n)\) 题解:\(\sum_{d=1}^md\sum_{i_1=1}^m...\sum_{i_n=1}^m[(i_1,...i_n)==d]\) \(=\sum_{d=1}^md\sum_{i_1=1}^{\lfloor \frac{m}{d} \rfloor}...\sum_{i_n=1}^{\lfloor \frac{m}{d} \rfloor}\sum_…
ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: https://ssplaysecond.blogspot.jp/2017/04/blog-post_8.html 莫比乌斯反演 https://ssplaysecond.blogspot.jp/2017/04/blog-post_91.html 狄利克雷卷积与杜教筛 https://ssplayse…
题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi试试? 因为是用的莫比乌斯函数求的,所以推导比大部分题解多...而且我写式子一般都比较详细,所以可能看上去很多式子,实际上是因为每一步都写了,几乎没有跳过的.所以应该都可以看懂的. 末尾的\(e\)函数是指的\(e[1] = 1\),\(e[x] = 0(x != 1)\)这样一个函数 \[\sum…
题目传送门(内部题92) 输入格式 一个整数$n$. 输出格式 一个答案$ans$. 样例 样例输入: 样例输出: 数据范围与提示 对于$20\%$的数据,$n\leqslant 10^6$. 对于$40\%$的数据,$n\leqslant 10^{12}$. 对于$100\%$的数据,$0\leqslant n\leqslant 10^{18}$. 题解 这道题里的小$\mu$其实就提示我们了$\mu$,也就是莫比乌斯函数. 那么,我们可以列出式子: $$ans=\sum \limits_{i…
居然扒到了学长出的题 和3944差不多(?),虽然一眼看上去很可怕但是仔细观察发现,对于mu来讲,答案永远是1(对于带平方的,mu值为0,1除外),然后根据欧拉筛的原理,\( \sum_{i=1}^{n}\phi(i^2)=\sum_{i=1}^{n}\phi(i)*i \),然后就可以正常推了: 设 \[ g(n)=\sum_{i=1}^{n}i\sum_{d=1}^{i}[d|i]\phi(d)=\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6} \] \[ s…
参考:http://blog.csdn.net/wzf_2000/article/details/54630931 有这样一个显然的结论:当\( |\mu(n)|==1 \)时,\( \phi(nk)=\phi(k)\sum_{d|gcd(n,k)}\phi(\frac{n}{d}) \)然后看n的范围比较友好就先不去管它,先看后面的: \[ if |\mu(i)|==1 \] \[ \sum_{k=1}^{i}\sum_{d|i,d|k}\phi(\frac{n}{d})\phi(k) \]…
传送门 不会…… 两篇加在一起都看不懂…… https://www.cnblogs.com/cellular-automaton/p/8241128.html https://www.luogu.org/blog/cjyyb/solution-p3768 //minamoto #include<iostream> #include<cstdio> #include<map> #define ll long long using namespace std; ; map&…
和bzoj 3944比较像,但是时间卡的更死 设\( f(n)=\sum_{d|n}\mu(d) g(n)=\sum_{i=1}^{n}f(i) s(n)=\sum_{i=1}^{n}\mu(i) \),然后很显然对于mu\( g(n)=1\),对于\( g(n)=n*(n+1)/2 \),然后可以这样转化一下: \[ g(n)=\sum_{i=1}^{n}\sum_{d|n}\mu(d) \] \[ =\sum_{d=1}^{n}\mu(d)\left \lfloor \frac{n}{d}…
我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的想学会莫比乌斯反演和杜教筛,请拿出纸笔,每个式子都自己好好的推一遍,理解清楚每一步是怎么来的,并且自己好好思考. Part1莫比乌斯反演 莫比乌斯反演啥都没有,就只有两个式子(一般只用一个) 原来我已经写过一次了,再在这里写一次 就只写常用的那个吧 基本的公式 对于一个函数\(f(x)\) 设\(g(x)=\…
[LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\] 其中\(f(x)\)表示\(x\)的次大质因子. 题解 这个数据范围不是杜教筛就是\(min\_25\)筛了吧... 看到次大质因子显然要\(min\_25\)筛了吧... 莫比乌斯反演的部分比较简单,懒得写过程了. \[ans=\sum_{T=1}^n [\frac{n}{T}]^2\sum_…
题意 求 \[ \sum_{i = 1}^{n} \sum_{i = 1}^{n} f(\gcd(i, j))^k \pmod {2^{32}} \] 其中 \(f(x)\) 为 \(x\) 的次大质因子,重复的质因子计算多次. 特别的,定义 \(f(1) = 0, f(p) = 0\) ,此处 \(p\) 为质数. 题解 首先先莫比乌斯反演前几步. \[ ans = \sum_{d = 1}^{n} f(d)^k \sum_{i = 1}^{\lfloor \frac{n}{d} \rfloo…
题目链接 \(Description\) 求\[\sum_{i=1}^n\sum_{j=1}^i\frac{lcm(i,j)}{gcd(i,j)}\] 答案对\(10^9+7\)取模. \(n<=10^9\) \(Solution\) 以前做的反演题都是\(j\)枚举到\(n\),但是现在\(j\)只枚举到\(i\)就非常难受,考虑怎么求\(\sum_{i=1}^n\sum_{j=1}^n\frac{lcm(i,j)}{gcd(i,j)}\). 可以把它看成是一个\(n*n\)的网格,第\(i\…
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_{n|d}\mu(\frac{d}{n})g(d)\end{aligned}\] 实际上还有 \[\begin{aligned}g(n)&=\sum_{d|n}f(d)\\f(n)&=\sum_{d|n}\mu(\frac{n}{d})g(d)\end{aligned}\] 证明可以看看这里,…
[BZOJ3930]选数(莫比乌斯反演,杜教筛) 题面 给定\(n,K,L,R\) 问从\(L-R\)中选出\(n\)个数,使得他们\(gcd=K\)的方案数 题解 这样想,既然\(gcd=K\),首先就把区间缩小一下 这样变成了\(gcd=1\) 设\(f(i)\)表示\(gcd\)恰好为\(i\)的方案数 那么,要求的是\(f(1)\) 设\(g(x)=\sum_{d|x}f(d)\) 所以\(g(x)\)表示\(x|gcd\)的方案数 这个不是很好求吗? 所以一波莫比乌斯反演 \[f(1)…
[BZOJ4652]循环之美(莫比乌斯反演,杜教筛) 题解 到底在求什么呢... 首先不管他\(K\)进制的问题啦,真是烦死啦 所以,相当于有一个分数\(\frac{i}{j}\) 因为值要不相等 所以有\(i \perp j\),也就是\(gcd(i,j)=1\) 现在考虑\(K\)进制 先从熟悉的\(10\)进制入手 如果一个最简分数是纯循环小数 我们知道,他的分母里面不含\(2,5\) 而且,巧极了\(10=2*5\) 于是乎,\(YY\)一下 如果\(K\)进制中一个分数是纯循环小数 那…
[Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\(gcd\)提出来 \[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[gcd(i,j)==d]\] 习惯性的提出来 \[\sum_{d=1}^nd^3\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}ij[gcd(i,j)==1]\] 后面这玩意很明显的来一发…
BZOJ_4176_Lucas的数论_杜教筛+莫比乌斯反演 Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目“求Sigma(f(i)),其中1<=i<=N”,其中 表示i的约数个数.他现在长大了,题目也变难了. 求如下表达式的值:   其中 表示ij的约数个数. 他发现答案有点大,只需要输出模1000000007的值. Input 第一行一个整数n. Output 一行一个整数ans,表示答案模100000…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌斯反演,详见这篇博客:初学莫比乌斯反演. 推式子 下面让我们来推式子. 首先,我们采用解决这种问题的常用套路,来枚举\(gcd\),就能得到这样一个式子: \[\sum_{d=1}^n\sum_{i=1}^{\lfloor\frac nd\rfloor}\sum_{j=1}^{\lfloor\fra…
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一步研究.然而他很快发现工作量太大了,于是向你寻求帮助.你的任务很简单,小z会告诉你一个整数K,你需要回答他最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. 输入 输入一行,包含4个空格分开的正整数,依次为N,K,L和H. 输出 输出一个整数,为…
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{d=1}^{n}[gcd(i,j)==d]d \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d] \] \[ \sum_{d=1}^{n}d\sum_{i=1}^{\left…
题目大意:略 洛谷传送门 鉴于洛谷最近总崩,附上良心LOJ链接 任何形容词也不够赞美这一道神题 $\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{M}[gcd(i,j)==1][gcd(j,K)==1]$ $\sum\limits_{j=1}^{M}[gcd(j,K)==1]\sum\limits_{i=1}^{N}[gcd(i,j)==1]$ 我们先处理右边的式子$\sum\limits_{i=1}^{N}[gcd(i,j)==1]$: $\sum\limits…
传送门 思路 (以下令\(F(n)=f(n)^k\)) 首先肯定要莫比乌斯反演,那么可以推出: \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2\sum_{d|T}F(d)\mu(T/d) \] 可以整除分块,但后面的东西怎么办呢? 令\(G(T)=F*\mu\),那么就有 \[ ans=\sum_{T=1}^n \lfloor\frac n T\rfloor^2G(T) \] 看到\(\mu\)函数有点烦,考虑用杜教筛的式子消去它. \[ g(1)S(…
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣N​f(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1N​f(i)  mod 109+7~mod~10^9+7 mod 109+7 1<=T<=5001<=N<=1091<=T<=500\\1<=N<=10^91<=T<=5001<=N<=109 只有最多555组数据N>106N>10…
题目描述 求∑i=1n∑j=1n(i,j) mod (1e9+7)n<=1010\sum_{i=1}^n\sum_{j=1}^n(i,j)~mod~(1e9+7)\\n<=10^{10}i=1∑n​j=1∑n​(i,j) mod (1e9+7)n<=1010 题目分析 乍一看十分像裸莫比乌斯反演,然而nnn的范围让人望而却步 于是先变化一下式子 Ans=∑i=1n∑j=1n(i,j)Ans=\sum_{i=1}^n\sum_{j=1}^n(i,j)Ans=i=1∑n​j=1∑n​(i,j…
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数刚好为K的选取方案有多少个.由于方案数较大,你只需要输出其除以1000000007的余数即可. \[N,K,L,H \leq 10^9,H-L \leq 10^5\] 分析 \(\because \gcd(ka,kb)=k\gcd(a,b)\),我们先把\(L,R\)除以\(K\),然后问题就变成了…
题意简述 给你两个整数\(n\),\(k\),让你求出这个式子 \[ \sum_{a_1=1}^n \sum_{a_2=a_1}^n \sum_{a_3=a_2}^n \cdots \sum_{a_k=a_{k-1}}^n \left[ \gcd {(a_1,a_2,a_3\cdots,a_k)} = 1\right] \] 做法 对于\(\gcd\)进行莫比乌斯反演 \[ Ans = \sum_p \mu(p) \sum_{a_1=1}^n \sum_{a_2=a_1}^{\frac{n}{p…
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i=1}^n\sum_{j=1}^n ij(i,j)&=\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^n ij[(i,j)=d]\\ &=\sum_{d=1}^nd\sum_{i=1}^{\lfloor \frac{n}{d}\rfloor}\sum_{j=1}^{\l…
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线性筛筛常见积性函数及其代码:https://blog.masterliu.net/algorithm/sieve/ 积性函数与线性筛(包括普通线性函数):https://blog.csdn.net/weixin_42562050/article/details/87997582 bzoj2154/b…