1. 防止过拟合的方法有哪些? 过拟合(overfitting)是指在模型参数拟合过程中的问题,由于训练数据包含抽样误差,训练时,复杂的模型将抽样误差也考虑在内,将抽样误差也进行了很好的拟合. 产生过拟合问题的原因大体有两个:训练样本太少或者模型太复杂. 防止过拟合问题的方法: (1)增加训练数据. 考虑增加训练样本的数量 使用数据集估计数据分布参数,使用估计分布参数生成训练样本 使用数据增强 (2)减小模型的复杂度. a.减少网络的层数或者神经元数量.这个很好理解,介绍网络的层数或者神经元的数…
正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大——因为训练出来的网络过拟合了训练集,对训练集外的数据却不work. 为了防止overfitting,可以用的方法有很多,下文就将以此展开.有一个概念需要先说明,在机器学习算法中,我们常常将原始数据集分为三部分:t…
ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深…
<div id="app"> <ul> <li v-for='item in goods'>{{item}}</li> </ul> <div>{{a}}</div> <button v-on:click='demo'>click</button>//由于js的弱点导致的,vue无法检测到数组内部的变化,只能检测到地址变化 </div> <script> v…
import requestsfrom bs4 import BeautifulSoup blslib="html5lib"user_agent="Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36"headers={"user-agent":user_ag…
sklearn使用技巧 sklearn上面对自己api的解释已经做的淋漓尽致,但对于只需要短时间入手的同学来说,还是比较复杂的,下面将会列举sklearn的使用技巧. 预处理 主要在sklearn.preprcessing包下. 规范化: MinMaxScaler :最大最小值规范化 Normalizer :使每条数据各特征值的和为1 StandardScaler :为使各特征的均值为0,方差为1 编码: LabelEncoder :把字符串类型的数据转化为整型 OneHotEncoder :特…
语法:  ElasticNet(self, alpha=1.0, l1_ratio=0.5, fit_intercept=True, normalize=False, precompute=False, max_iter=1000, copy_X=True, tol=1e-4, warm_start=False, positive=False, random_state=None, selection=’cyclic’) 类型:  sklearn.linear_model.coordinate_…
1. DNN神经网络的前向传播(FeedForward) 2. DNN神经网络的反向更新(BP) 3. DNN神经网络的正则化 1. 前言 和普通的机器学习算法一样,DNN也会遇到过拟合的问题,需要考虑泛化,这里我们就对DNN的正则化方法做一个总结. 2. DNN的L1和L2正则化 想到正则化,我们首先想到的就是L1正则化和L2正则化.L1正则化和L2正则化原理类似,这里重点讲述DNN的L2正则化. 而DNN的L2正则化通常的做法是只针对与线性系数矩阵\(W\),而不针对偏倚系数\(b\).利用…
scikit-learn API 这是scikit-learn的类和函数参考.有关详细信息,请参阅完整的用户指南,因为类和功能原始规格可能不足以提供有关其用途的完整指南. sklearn.base:基类和实用函数 所有估算器的基类. 基类 base.BaseEstimator:scikit-learn中所有估算器的基类 base.BiclusterMixin:Mixin类适用于scikit-learn中的所有bicluster估算器 base.ClassifierMixin:Mixin类适用于s…