UVA - 10462 题意: 求次小生成树的模板题,这道题因为有重边的存在,所以用kruskal求比较好. #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <string> #include <vector> #include <map> #include <set> #include…
[题意] n个点,m条边,求最小生成树的值和次小生成树的值. InputThe Input starts with the number of test cases, T (1 < T < 15) on a line. Then T test cases follow. Thefirst line of every test case contains two numbers, which are separated by a space, N (3 < N < 100)the n…
模板题 #include <iostream> #include <algorithm> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <stack> #include <queue> #include <cmath> #include <vector> using n…
思路: Prim: 这道题目中有重边 Prim可以先加一个sec数组来保存重边的次小边,这样不会影响到最小生成树,在算次小生成树时要同时判断次小边(不需判断是否在MST中) Kruskal: Kruskal对重边就很友好了,不用考虑 原理是这样的:我们先找最小生成树并用used标记好哪些边是MST的边,然后我们暴力遍历每一条MST边被删去的情况,如果还能生成MST就找出这些MST最小的,这棵MST就是次小生成树 Prim代码: #include<cmath> #include<stack…
Nasa, being the most talented programmer of his time, can’t think things to be so simple. Recently all his neighbors have decided to connect themselves over a network (actually all of them want to share a broadband internet connection :-)). But he wa…
题目大意: Nasa应邻居们的要求,决定用一个网络把大家链接在一起.给出v个点,e条可行路线,每条路线分别是x连接到y需要花费w. 1:如果不存在最小生成树,输出“No way”. 2:如果不存在次小生成树,输出“No second way”. 3:如果两者都存在,输出次小生成树的长度. 解题思路: 次小生成数+kruskal模板 #include <cmath> #include <queue> #include <string> #include <cstdi…
题意: 给你一张无向图,让你判断三种情况:1.不是连通图(无法形成生成树)2.只能生成唯一的生成树 3.能生成的生成树不唯一(有次小生成树),这种情况要求出次小生成树的边权值和. 思路: 比较常见的次小生成树做法:先求出最小生成树,再依次使用不在最小生成树上的边与最小生成树连接,连接后必然出现且仅出现一个环(由于生成树上的任意两点之间都有唯一的一条路径,且图中所有的点都在生成树上),将这条边与环上除了这条边权值最大的边替换,就形成了新的生成树,在不断尝试新边的过程中维护一个最小的生成树的边权值和…
Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see a triangle ABC. Point D, E and F divides the sides BC, CA and AB into ratio 1:2 respectively. That is CD=2BD, AE=2CE and BF=2AF. A, D; B, E and C, F…
题意:村子里有n个人,给出父亲和儿子的关系,有多少种方式可以把他们排成一列,使得没人会排在他父亲的前面 思路:设f[i]表示以i为根的子树有f[i]种排法,节点i的各个子树的根节点,即它的儿子为c1,c2,c3...ck. 那么先给节点i的子树确定各自的顺序,为f(c1),f(c2)...f(ck). 然后把每棵子树的所有节点看成同一元素,根据有重复元素的全排列方式共有s(i-1)!/(s(c1)!*s(c2)!*...*s(ck)!) 再根据乘法原理,f[i]=f(c1)* f(c2) *f(…
又是求次小生成树,就是求出最小生成树,然后枚举不在最小生成树上的每条边,求出包含着条边的最小生成树,然后取一个最小的 #include <iostream> #include <algorithm> #include <cstdio> #include <cstdlib> #include <cstring> #include <string> #include <stack> #include <queue>…