这里总结一个guide,主要针对刚开始做数据挖掘和数据分析的同学 说道统计分析工具你一定想到像excel,spss,sas,matlab以及R语言.R语言是这里面比较火的,它的强项是强大的绘图功能以及强大丰富的统计包,通过这个平台你可以了解统计前言的一些实现.它的唯一的问题就是性能问题.所以有时候你需要借用python. 使用R语言你可能需要Rstudio这个工具. python在在任何方面都有相当丰富的模块,科学计算领域也不例外,你可以查看python wiki也可以寻找相关的团体. 你可能会…
今天在搞定Django框架的blog搭建后,尝试一下python的科学计算能力. python的科学计算有三剑客:numpy,scipy,matplotlib. numpy负责数值计算,矩阵操作等: scipy负责常见的数学算法,插值.拟合等: matplotlib负责画图. 首先,百度上头三个,依次安装. 可以考虑使用pyhton34/script/easy-install 工具: easy-insatll -m matplotlib; 尝试一下代码,拟合实例:                …
今天在搞定Django框架的blog搭建后,尝试一下python的科学计算能力. python的科学计算有三剑客:numpy,scipy,matplotlib. numpy负责数值计算,矩阵操作等: scipy负责常见的数学算法,插值.拟合等: matplotlib负责画图. 首先,百度上头三个,依次安装. 可以考虑使用pyhton34/script/easy-install 工具: easy-insatll -m matplotlib; 尝试一下代码,拟合实例:  1 # -*- coding…
Python是一种强大的编程语言,其提供了很多用于科学计算的模块,常见的包括numpy.scipy.pandas和matplotlib.要利用Python进行科学计算,就需要一一安装所需的模块,而这些模块可能又依赖于其它的软件包或库,因而安装和使用起来相对麻烦.幸好有人专门在做这一类事情,将科学计算所需要的模块都编译好,然后打包以发行版的形式供用户使用,Anaconda就是其中一个常用的科学计算发行版. 我们从网站(链接1)下载的默认的Anaconda版本已经内置了很多库(链接2),包括nump…
转载自:http://blog.sina.com.cn/s/blog_62dfdc740101aoo6.html Python下大多数工具包的安装都很简单,只需要执行 “python setup.py install”命令即可.然而,由于SciPy和numpy这两个科学计算包的依赖关系较多,安装过程较为复杂.网上教程较为混乱,而且照着做基本都不能用.在仔细研读各个包里的README和INSTALL之后,终于安装成功.现记录如下. 系统环境: OS:RedHat5 Python版本:Python2…
一.numpy库和matplotlib库的学习 (1)numpy库介绍:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合 np.array([1,2,3])列表转换为数组:np.array((1,2,3))元组转换为数组; np.array(range(5))把range对象转换为数组:np.arange(8)类似于内置的range()函数 np.linspace(0,10,11,endpoint…
回想起大学四年 专业一直使用matlab,然而我却没在PC上装成功过,以前懒于思考这种数学工具的作用,直到最近,大学同学研究生要毕业了,几经交流,和自己阅读了一些机器学习的教材之后,发觉科学计算包和画图工具对于某些岗位来说非常的必要,因为使用数学建模而设计各种工业设计图的时候,需要对参数的调制画图观察效果.虽然我没有接触过实际场景,但在概率论的角度看,某些离散集合的数字特征(期望,方差)等,在图像上的表现,也可以借助此科学计算包辅助分析. set up 第一步 到python官网下载一个3.6的…
Python下大多数工具包的安装都很简单,只需要执行 "python setup.py install"命令即可.然而,由于SciPy和numpy这两个科学计算包的依赖关系较多,安装过程较为复杂.网上教程较为混乱,而且照着做基本都不能用.在仔细研读各个包里的README和INSTALL之后,终于安装成功.现记录如下. 系统环境: OS:RedHat5 Python版本:Python2.7.3 gcc版本:4.1.2 各个安装包版本: scipy-0.11.0 numpy-1.6.2 n…
Python是程序史上最流行的开源语言之一. 仅在官方包索引PyPi上就已经发布了超过10万个开源软件包,而且还有更多的项目. 在SciPy的麾下,有一个成熟的python包生态系统,可以使用Python做深入的科学分析. 在workshop中,我们涵盖了大量的核心软件包,并为您指明进一步研究的方向. Workshop附有几个互动的Jupyter Notebook示例,用来说明SciPy生态系统的不同方面. Workshop Notebooks示例 初学MNIST - 一个关于如何建立一个简单的…