[ML] The Basics: Training Your First Model】的更多相关文章

The problem we will solve is to convert from Celsius to Fahrenheit, where the approximate formula is:…
用回归来做分类: 远大于1的点对于回归来说就是个error, 为了让这些点更接近1,会得到紫色线. 可见,回归中定义模型好坏的方式不适用于分类中.---回归会惩罚那些太过正确的点 如何计算未出现在训练数据中的点属于某类的概率? 假设该类对应的训练数据采样于一个高斯分布. 可以用该训练数据来估计该高斯分布的参数. 基本思路: 很多不同参数的高斯分布都可以采样出训练数据,但是可能性不同, 选出其中可能性最大的那个高斯分布对应的参数.---最大似然估计 假设sigma相同时,可以得到线性函数. 该生成…
摘要: 1.pipeline 模式 1.1相关概念 1.2代码示例 2.特征提取,转换以及特征选择 2.1特征提取 2.2特征转换 2.3特征选择 3.模型选择与参数选择 3.1 交叉验证 3.2 训练集-测试集 切分 内容: 1.pipeline 模式 1.1相关概念 DataFrame是来自Spark SQL的ML DataSet 可以存储一系列的数据类型,text,特征向量,Label和预测结果 Transformer:将DataFrame转化为另外一个DataFrame的算法,通过实现t…
地址: http://spark.apache.org/docs/2.0.0/ml-pipeline.html   Spark PipeLine 是基于DataFrames的高层的API,可以方便用户构建和调试机器学习流水线 可以使得多个机器学习算法顺序执行,达到高效的数据处理的目的   DataFrame是来自Spark SQL的ML DataSet 可以存储一系列的数据类型,text,特征向量,Label和预测结果   Transformer:将DataFrame转化为另外一个DataFra…
Spark ML Pipeline基于DataFrame构建了一套High-level API,我们可以使用MLPipeline构建机器学习应用,它能够将一个机器学习应用的多个处理过程组织起来,通过在代码实现的级别管理好每一个处理步骤之间的先后运行关系,极大地简化了开发机器学习应用的难度.        Spark ML Pipeline使用DataFrame作为机器学习输入输出数据集的抽象.DataFrame来自Spark SQL,表示对数据集的一种特殊抽象,它也是Dataset(它是Spar…
本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.evaluation下. 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1.回归评估指标 RegressionEvaluator Evaluator for regression, which expects two input columns: prediction and label. 评估…
ML Pipelines管道 In this section, we introduce the concept of ML Pipelines. ML Pipelines provide a uniform set of high-level APIs built on top of DataFrames that help users create and tune practical machine learning pipelines. 介绍ML Pipelines的概念.ML管道提供一…
How much training data do you need?   //@樵夫上校: 0. 经验上,10X规则(训练数据是模型参数量的10倍)适用与大多数模型,包括shallow network. 1.线性模型可以应用10X的经验规则,模型参数是特征选择后的数量(PCA等方法).2.NN可以将10X规则当做训练数据量的下限. The quality and amount of training data is often the single most dominant factor t…
边缘智能:按需深度学习模型和设备边缘协同的共同推理 本文为SIGCOMM 2018 Workshop (Mobile Edge Communications, MECOMM)论文. 笔者翻译了该论文.由于时间仓促,且笔者英文能力有限,错误之处在所难免:欢迎读者批评指正. 本文及翻译版本仅用于学习使用.如果有任何不当,请联系笔者删除. 本文作者包含3位,En Li, Zhi Zhou, and Xu Chen@School of Data and Computer Science, Sun Yat…
https://www.microsoft.com/net/learn/apps/machine-learning-and-ai/ml-dotnet Machine Learning made for .NET ML.NET is a machine learning framework built for .NET developers. Use your .NET and C# or F# skills to easily integrate custom machine learning…