首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
MNIST 数据集介绍
】的更多相关文章
MNIST 数据集介绍
在学习机器学习的时候,首要的任务的就是准备一份通用的数据集,方便与其他的算法进行比较. MNIST数据集是一个手写数字数据集,每一张图片都是0到9中的单个数字,比如下面几个: MNIST数据库的来源是两个数据库的混合,一个来自Census Bureau employees(SD-3),一个来自high-school students(SD-1):有训练样本60000个,测试样本10000个.训练样本和测试样本中,employee和student写的都是各占一半.60000个训练样本一共大…
MNIST数据集介绍
大多数示例使用手写数字的MNIST数据集[^1].该数据集包含60,000个用于训练的示例和10,000个用于测试的示例.这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28x28像素),其值为0到1.为简单起见,每个图像都被平展并转换为784(28 * 28)个特征的一维numpy数组. 概览 用法 在我们的示例中,我们使用TensorFlow input_data.py脚本来加载该数据集. 它对于管理我们的数据非常有用,并且可以处理: 加载数据集 将整个数据集加载到numpy数组中…
Windows下mnist数据集caffemodel分类模型训练及测试
1. MNIST数据集介绍 MNIST是一个手写数字数据库,样本收集的是美国中学生手写样本,比较符合实际情况,大体上样本是这样的: MNIST数据库有以下特性: 包含了60000个训练样本集和10000个测试样本集: 分4部分,分别是一个训练图片集,一个训练标签集,一个测试图片集,一个测试标签集,每个标签的值是0~9之间的数字: 原始图像归一化大小为28*28,以二进制形式保存 2. Windows+caffe框架下MNIST数据集caffemodel分类模型训练及测试 1. 下载mnist数…
Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)
基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html 摘要 在前面的博文中,我详细介绍了Caffe的网络结构和求解文件,还介绍了如何制作LMDB和Hdf5数据源文件.但是我们还没有完整的介绍过如何在Caffe框架下去训练一个神经网络模型,在本篇博文中我将从最经典.简单的卷积神经网络Lenet(CNN的开端)和最简单的数据集MNIST(手写数字)出发,详细介绍整个网络的训练与测试过程. 1. …
从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel
一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数据集进行训练和利用caffe来实现别人论文中的模型(目前在尝试的是轻量级的SqueezeNet)三步走.不求深度,但求详细.因为说实话caffe-windows的配置当初花了挺多时间的,目前貌似还真没有从头开始一步步讲起的教程,所以博主就争取试着每一步都讲清楚吧. 这里说些题外话:之所以选择Sque…
使用libsvm对MNIST数据集进行实验
使用libsvm对MNIST数据集进行实验 在学SVM中的实验环节,老师介绍了libsvm的使用.当时看完之后感觉简单的说不出话来. 1. libsvm介绍 虽然原理要求很高的数学知识等,但是libsvm中,完全就是一个工具包,拿来就能用.当时问了好几遍老师,公司里做svm就是这么简单的?敲几个命令行就可以了...貌似是这样的.当然,在大数据化的背景下,还会有比如:并行SVM.多核函数SVM等情况的研究和应用. 实验环节老师给的数据很简单,也就1000个数据点,使用svm进行分类.没有太多好说的…
mnist的格式说明,以及在python3.x和python 2.x读取mnist数据集的不同
有一个关于mnist的一个事例可以参考,我觉得写的很好:http://www.cnblogs.com/x1957/archive/2012/06/02/2531503.html #!/usr/bin/env python # -*- coding: UTF-8 -*- import struct # from bp import * from datetime import datetime # 数据加载器基类 class Loader(object): def __init__(sel…
RNN入门(一)识别MNIST数据集
RNN介绍 在读本文之前,读者应该对全连接神经网络(Fully Connected Neural Network, FCNN)和卷积神经网络( Convolutional Neural Network, CNN)有一定的了解.对于FCNN和CNN来说,他们能解决很多实际问题,但是它们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的 .而在现实生活中,我们输入的向量往往存在着前后联系,即前一个输入和后一个输入是有关联的,比如文本,语音,视频等,因此,我们需要了解深度学习中…
基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络
基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训练,在MNIST数据集中每张图像的分辨率为28*28,即784维,对应于上图中的x; 而输出为数字类别,即0~9,因此上图中的y的维度维10.因此权重w的维度为[784, 10],wi,j代表第j维的特征对应的第i类的权重值,主要是为了矩阵相乘时计算的方便,具体见下面代码. 训练过程 1.训练过程中…
机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化
一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度跟激活函数的梯度成正比(即激活函数的梯度越大,w和b的大小调整的越快,训练速度也越快) 3. 激活函数是sigmoid函数时,二次代价函数调整参数过程分析 理想调整参数状态:距离目标点远时,梯度大,参数调整较快:距离目标点近时,梯度小,参数调整较慢.如果我的目标点是调整到M点,从A点==>B点的调整…