最小点权覆盖集&最大点权独立集】的更多相关文章

最小点权覆盖集 二分图最小点权覆盖集解决的是这样一个问题: 在二分图中,对于每条边,两个端点至少选一个,求所选取的点最小权值和. 方法: 1.先对图二分染色,对于每条边两端点的颜色不同 2.然后建立源点S,向其中一种颜色的点连一条容量为该点权值的边 3.建立汇点T,由另一种颜色的点向T连一条容量为该点权值的边 4.对于二分图中原有的边,改为由与S相连的点连向与T相连的点的一条容量为INF的边 跑一遍最大流,其结果就是最小点权和. 原理: 实际为最小割.建好图后,对整张图求最小割,那么不可能割IN…
嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem Description 给你一个m*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是…
/** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge.net/problem/HDU-1569 题意:一个方格n*m,取出一些点,要求两两不相邻,求最大和. 思路:建图过程:对于二维矩阵,如果(i+j)%2==0,那么放在X集,s->(i-1)*m+j, cap = 元素值.否则放在Y集, (i-1)*m+j->t, cap = 元素值. 如果u与…
最小点权覆盖就是,对于有点权的有向图,选出权值和最少的点的集合覆盖所有的边. 解二分图最小点权覆盖集可以用最小割: vs-X-Y-vt这样连边,vs和X部点的连边容量为X部点的权值,Y部和vt连边容量为Y部点的权值,X和Y是原二分图中的边容量为INF. 这一题建二分图是这样的:把原图中的点拆成两个点分别作二分图的X部和Y部,一个入点u+一个出点u-,权值就是题目给的那两个:原图中每条有向弧<u,v>变成二分图的边(u-,v+). 然后就是建立容量网络,利用最小割求出这个二分图的最小点权覆盖集.…
                                                      Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8158   Accepted: 2620   Special Judge Description Alice and Bob play the following game. First, Alice draws some d…
题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖集.WA在输出最小割方案上. [输出最小割方案]从源点S做一次DFS遍历,标记所有访问到的点,这些点就是S点集.然后对于每一条满流边,如果其两端点一个在S点集一个不在则该边就是此方案下的最小割边. 代码 [cpp] #include <iostream> #include <cstdio&g…
题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点的权被分为出入?必然拆点啊!每个点一分为二,点权:出的为出点权,入的为入点权,原来边仍在 ,注意,这里(1-)->(1+),不多添加边,因为相当于求新图的最小点权覆盖集(覆盖所有边,每选一个点 恰好去除了它的边(要原图的入边或出边),),所以不可以在新图上再添加边(这里不是到不到的问题了) ,若添加…
题目链接:https://cn.vjudge.net/problem/HDU-1565 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大.   Input 包括多个测试实例,每…
题意:有一张图,对于每个点,有出边和入边,现在目的是删除改图的所有边,对于每个点,删除出边的花费Wi-,删除入边的花费Wi+,现在的目的求删去所有边后的花费最小. 建图方法:对于每个点i,拆点为i,i+n,对于入边,从i+n想汇点T连边,值为入边花费:对于出边,从S向i连边,权值为出边花费.m组相连的边(x,y),从x向y+n连边, 费用INF.求出最小割. 然后是计算删除的是哪些点.对于完成最小割后的图,从源点S进行dfs,如果能够访问到,标记.对于不能访问到的点,i<=n时,这个点的出边是属…
/* 最大点权独立集=总权值-最小点权覆盖集 最大点权独立集=最大流 最小点权覆盖集=最小割 题意: 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. 根据奇偶建立二分图, if(i+j)%2==0 源点和该点连接,权值为该点的点权, if(i+j)%2==1 该点和汇点连接,权值为该点的点权, 之后若i+j为偶数的点和i+j为奇数的点之间相邻,那么就连一条从为偶数的点到为奇…