SVM1 线性SVM】的更多相关文章

一.Linear Support Vector Machine 接下来的讨论假设数据都是线性可分的. 1.1 SVM的引入:增大对测量误差的容忍度 假设有训练数据和分类曲线如下图所示: 很明显,三个分类器都能够正确分类训练数据,但是哪一个的效果更好呢?直觉告诉我们第三个,为什么呢? 这是因为第三个的那些点离分割超平面的距离较远,这样能够容忍更大的噪声, 鲁棒性更强. 1.2 间隔最大化问题的建模 我们的目标是寻找分割超平面导致间隔最大化.形象的说我们定义分割超平面两边的点与分割超平面的最短距离为…
(本文内容和图片来自林轩田老师<机器学习技法>) 1. 线性SVM的推导 1.1 形象理解为什么要使用间隔最大化 容忍更多的测量误差,更加的robust.间隔越大,噪声容忍度越大: 1.2 SVM的问题描述 表示为正式的形式,就是: 1.3 推导点到平面的距离 因此,由于约束条件1,距离里面的绝对值可以去掉,原来的最优化问题变为: 1.4 将SVM问题写成更容易解决的形式 由于w和b乘以同样的倍数得到的平面不变.因此我们做一个放缩,规定: 因此问题就变为了: 在这里,我们发现第二个约束条件其实…
cs231n:线性svm与softmax 参数信息: 权重 W:(D,C) 训练集 X:(N,D),标签 y:(N,1) 偏置量bias b:(C,1) N:训练样本数:  D:样本Xi 的特征维度,Xi = [ Xi1,Xi2,...,XiD]: C:类别数量 正则化系数 λ :控制正则化的强度 delta / Δ : 间隔 linear svm: 对训练样本(Xi,yi),其对应每个类别的得分为: score = W*Xi+ b 是长度为C的矢量,以s表示 score, s = [s1, s…
  支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learning 很流行,SVM 仍然是一种很有的机器学习算法,在数据集小的情况下能比 Deep Learning 取得更好的结果.   本文将详细介绍线性 SVM,非线性 SVM 涉及到的 kernel,本文中没有介绍.我将从以下两个方面展开介绍线性 SVM: 间隔和支持向量 对偶问题 1. 间隔和支持向量  …
线性SVM算法的一般过程 线性SVM的推导 超平面方程 SVM是用来分类的.给定一系列输入数据(n维向量),需要找到一个切分界线(n-1维的超平面),这里假定数据是线性可分的.比如,二维数据的超平面是直线,三维数据的超平面是二维平面.以二维数据为例: 二维平面的直线一般式:\(Ax+By+C=0\),可以写成向量的形式: \[ \pmatrix {A \ B}\pmatrix {x\\y}+C=0 \] 令\(\vec w=\pmatrix {A\\B}\),\(\vec x=\pmatrix{…
一.SVM SVM的英文全称是Support Vector Machines,我们叫它支持向量机.支持向量机是我们用于分类的一种算法. 1 示例: 先用一个例子,来了解一下SVM 桌子上放了两种颜色的球,用一根棍分开它们,要求:尽量在放更多球之后,仍然适用. 我们可以这样放: 又在桌上放了更多的球,似乎有一个球站错了阵营.显然,我们需要对棍做出调整. SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙.这个间隙就是球到棍的距离. 现在好了,即使放了更多的球,棍仍然是一个好的分界线.…
(本文内容和图片来自林轩田老师<机器学习技法>) 1. 线性SVM的推导 1.1 形象理解为什么要使用间隔最大化 容忍更多的测量误差,更加的robust.间隔越大,噪声容忍度越大: 1.2 SVM的问题描述 表示为正式的形式,就是: 1.3 推导点到平面的距离 因此,由于约束条件1,距离里面的绝对值可以去掉,原来的最优化问题变为: 1.4 将SVM问题写成更容易解决的形式 由于w和b乘以同样的倍数得到的平面不变.因此我们做一个放缩,规定: 因此问题就变为了: 在这里,我们发现第二个约束条件其实…
1 概述 基础的理论知识参考线性SVM与Softmax分类器. 代码实现环境:python3 2 数据处理 2.1 加载数据集 将原始数据集放入"data/cifar10/"文件夹下. ### 加载cifar10数据集 import os import pickle import random import numpy as np import matplotlib.pyplot as plt def load_CIFAR_batch(filename): ""&q…
SVM-支持向量机 SVM(Support Vector Machine)-支持向量机,是一个功能非常强大的机器学习模型,可以处理线性与非线性的分类.回归,甚至是异常检测.它也是机器学习中非常热门的算法之一,特别适用于复杂的分类问题,并且数据集为小型.或中型的数据集. 这章我们会解释SVM里的核心概念.原理以及如何使用. 线性SVM分类 我们首先介绍一下SVM里最基本的原理.这里先看一张图: 这个是Iris数据集中的部分数据,可以看到这两个类别可以由一条直线很简单地直接分开(也可以说它们是线性可…
<Machine Learning in Action>-- 剖析支持向量机,单手狂撕线性SVM 前面在写NumPy文章的结尾处也有提到,本来是打算按照<机器学习实战 / Machine Learning in Action>这本书来手撕其中代码的,但由于实际原因,可能需要先手撕SVM了,这个算法感觉还是挺让人头疼,其中内部太复杂了,涉及到的数学公式太多了,也涉及到了许多陌声的名词,如:非线性约束条件下的最优化.KKT条件.拉格朗日对偶.最大间隔.最优下界.核函数等等,天书或许.可…