Spark ML 文本的分类】的更多相关文章

最近一直在研究Spark的分类算法,因为我们是做日志文本分类,在官网和各大网站一直没找到相应的Demo,经过1个多月的研究,终于有点成效. val sparkConf = new SparkConf().setAppName("DecisionTree1").setMaster("local[2]") val sc = new SparkContext(sparkConf) var data1 = sc.textFile("/XXX/sample_libs…
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.html IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码被改造.第三,认知计算的出现.其中,认知计算可以: 通过感知与互动,理解非结构化数据 通过生成…
1. Naive Bayes算法 朴素贝叶斯算法算是生成模型中一个最经典的分类算法之一了,常用的有Bernoulli和Multinomial两种.在文本分类上经常会用到这两种方法.在词袋模型中,对于一篇文档$d$中出现的词$w_0,w_1,...,w_n$, 这篇文章被分类为$c$的概率为$$p(c|w_0,w_1,...,w_n) = \frac{p(c,w_0,w_1,...,w_n)}{p(w_0,w_1,...,w_n)} = \frac{p(w_0,w_1,...,w_n|c)*p(c…
Spark ML Pipeline基于DataFrame构建了一套High-level API,我们可以使用MLPipeline构建机器学习应用,它能够将一个机器学习应用的多个处理过程组织起来,通过在代码实现的级别管理好每一个处理步骤之间的先后运行关系,极大地简化了开发机器学习应用的难度.        Spark ML Pipeline使用DataFrame作为机器学习输入输出数据集的抽象.DataFrame来自Spark SQL,表示对数据集的一种特殊抽象,它也是Dataset(它是Spar…
一.简介 贝叶斯定理是关于随机事件A和事件B的条件概率的一个定理.通常在事件A发生的前提下事件B发生的概率,与在事件B发生的前提下事件A发生的概率是不一致的.然而,这两者之间有确定的关系,贝叶斯定理就是这种关系的陈述.其中,L(A|B)表示在B发生的前提下,A发生的概率.L表示要取对数的意思. 关键词解释: 1.p(A),p(B)表示A,B发生的概率,也称先验概率或边缘概率. 2.p(B|A)表示在A发生的前提下,B发生的概率,也称后验概率. 基本公式:p(A|B) = p(AB)/p(B) 图…
本博客为作者原创,如需转载请注明参考           在深入理解Spark ML中的各类算法之前,先理一下整个库的设计框架,是非常有必要的,优秀的框架是对复杂问题的抽象和解剖,对这种抽象的学习本身,就是加深框架所面对的问题的理解的一种有效途径.纷繁复杂的机器学习问题,经过优秀框架的解析,变得简单清晰起来.         基于面向对象语言的程序设计,本质上类似于搭积木,从一个最抽象.最简单的内容开始,一点一点的往上堆叠,形成一个对象的框架.比如Java中的Object,Python中的PyO…
Spark提供了常用机器学习算法的实现, 封装于spark.ml和spark.mllib中. spark.mllib是基于RDD的机器学习库, spark.ml是基于DataFrame的机器学习库. 相对于RDD, DataFrame拥有更丰富的操作API, 可以进行更灵活的操作. 目前, spark.mllib已经进入维护状态, 不再添加新特性. 本文将重点介绍pyspark.ml, 测试环境为Spark 2.1, Python API. 首先介绍pyspark.ml中的几个基类: ML Da…
实用的朴素贝叶斯模型建模 建模过程主要是把文本转化成向量然后再作分析 数据格式: ,善良 美丽 ,丑陋 阴险 卑鄙 ,温和 ....... 注:前面是给文章贴的标签,后面是文章的分词,分词可以找关于分词的文章去查看,后面我也会写关于分词的文章 import org.apache.spark.SparkConf import org.apache.spark.sql.SparkSession import org.apache.spark.SparkContext import org.apach…
下面代码按照之前参加Kaggle的python代码改写,只完成了模型的训练过程,还需要对test集的数据进行转换和对test集进行预测. scala 2.11.12 spark 2.2.2 package ML.Titanic import org.apache.spark.SparkContext import org.apache.spark.sql._ import org.apache.spark.sql.functions._ import org.apache.spark.ml.fe…
VectorIndexer 主要作用:提高决策树或随机森林等ML方法的分类效果.VectorIndexer是对数据集特征向量中的类别(离散值)特征(index categorical features categorical features )进行编号.它能够自动判断那些特征是离散值型的特征,并对他们进行编号,具体做法是通过设置一个maxCategories,特征向量中某一个特征不重复取值个数小于maxCategories,则被重新编号为0-K(K<=maxCategories-1).某一个特…