nyoj998(euler)】的更多相关文章

题意:题意:给出n和m,求满足条件gcd(x, n)>=m的x的gcd(x, n)的和,其中1<=x<=n,1<= n, m <= 1e9:思路:此题和nyoj1007差不多,比1007简单一点:http://www.cnblogs.com/geloutingyu/p/5966998.html(1007题解) 1 #include <iostream> #include <stdio.h> #define ll long long using name…
上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出这道题的人) program 4 A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.…
The Euler functionTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6018 Accepted Submission(s): 2539 Problem DescriptionThe Euler function phi is an important kind of function in number theory, (n)…
Euler Tour Tree最大的优点就是可以方便的维护子树信息,这点LCT是做不到的.为什么要维护子树信息呢..?我们可以用来做fully dynamic connectivity(online). Euler Tour Tree 维护将树中的边u--v变成u->v,v->u后的Euler Tour. 换根: 因为Euler Tour是一个环,那么我们可以在任意一个k->u的地方切断,然后把这段东西接到最后去,这样就把u变成根了 Link: 先换根,然后添加u->v与v->…
euler(x)公式能计算小于等于x的并且和x互质的数的个数: 我们再看一下如何求小于等于n的和n互质的数的和, 我们用sum(n)表示: 若gcd(x, a)=1,则有gcd(x, x-a)=1: 证明:假设gcd(x, x-a)=k (k>1),那么有(x-a)%k=0---1式,x%k=0---2式: 由1式和2式可得 a%k=0---3式: 由2式和3式可得gcd(x, a)=k,与gcd(x, a)=1矛盾,即原式得证: 由此我们可以得知小于x并且与x互质的数必然是成对出现的并且有对应…
1 Euler 公式 $e^{i\pi}+1=0$ (1) 它把 a.  $e:$ 自然对数的底 $\approx 2. 718281828459$ (数分) b.  $i$: 虚数单位 $=\sqrt{-1}$ (复变) c.  $\pi$: 圆周率 $\approx 3. 1415926$ (小学就学了) d.  $1$: 自然数的单位 (道生一,一生二,二生三,三生万物---老子关于万物的起源) e.  $0$: 人类最伟大的发现之一 (可以考虑平衡, 欠费等问题了) 这些数学中最重要的一…
题目求φ(a)+φ(a+1)+...+φ(b-1)+φ(b). 用欧拉筛选法O(n)计算出n以内的φ值,存个前缀和即可. φ(p)=p-1(p是质数),小于这个质数且与其互质的个数就是p-1: φ(p*a)=(p-1)*φ(a)(p是质数且p不能整除a),因为欧拉函数是积性函数,φ(p*a)=φ(p)*φ(a): φ(p*a)=p*φ(a)(p是质数且p|a),不知怎么理解.. #include<cstdio> #include<cstring> using namespace s…
https://en.wikipedia.org/wiki/Euler's_totient_function counts the positive integers up to a given integer n that are relatively prime to n. if two numbers m and n are relatively prime, then φ(mn) = φ(m) φ(n); https://zh.wikipedia.org/wiki/同餘 数学上,同余(英…
题目链接:poj2284 That Nice Euler Circuit 欧拉公式:如果G是一个阶为n,边数为m且含有r个区域的连通平面图,则有恒等式:n-m+r=2. 欧拉公式的推广: 对于具有k(k≥2)个连通分支的平面图G,有:n-m+r=k+1. 题意:给出连通平面图的各顶点,求这个欧拉回路将平面分成多少区域. 题解:根据平面图的欧拉定理“n-m+r=2”来求解区域数r. 顶点个数n:两两线段求交点,每个交点都是图中的顶点. 边数m:在求交点时判断每个交点落在第几条边上,如果一个交点落在…
                                                      That Nice Euler Circuit Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 1977   Accepted: 626 Description Little Joey invented a scrabble machine that he called Euler, after the great…
拖了有段时间,今天来总结下两个常用的素数筛法: 1.sieve of Eratosthenes[埃氏筛法] 这是最简单朴素的素数筛法了,根据wikipedia,时间复杂度为 ,空间复杂度为O(n). 算法思想:先假定所有的数都是素数,然后从最小的素数2出发,把素数的所有倍数筛出去.又因为一个数的质因数都是成对出现的,比如100 = 1*100 = 2*50 = .....= 10*10,所以筛素数时只用筛到 n的开平方就行了. 伪代码如下: 对于任意的范围n, 设bool prime[ ],初始…
开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we list all the natural numbers below 10 # that are multiples of 3 or 5, we get 3, 5, 6 and 9. # The sum of these multiples is 23. # Find the sum of all…
Su Doku Su Doku (Japanese meaning number place) is the name given to a popular puzzle concept. Its origin is unclear, but credit must be attributed to Leonhard Euler who invented a similar, and much more difficult, puzzle idea called Latin Squares. T…
题意: 给出一个图,有的边是有向边,有的是无向边.试找出一条欧拉回路. 分析: 按照往常的思维,遇到混合图,我们一般会把无向边拆成两条方向相反的有向边. 但是在这里却行不通了,因为拆成两条有向边的话,就表示这个边能“在两个相反方向各经过一次”. 而题意是这个边只能经过一次. 假设图中存在欧拉回路,则所有点的出度out(i) 等于 入度in(i) 不妨这样,先将所有的无向边任意定向,对于out(u) > in(u)的点,可以将已经定向的无向边u->v反向为v->u,这样out(u) - i…
题意:给一个图,图中有部分是向边,部分是无向边,要求判断是否存在欧拉回路,若存在,输出路径. 分析:欧拉回路的定义是,从某个点出发,每条边经过一次之后恰好回到出发点. 无向边同样只能走一次,只是不限制方向而已,那么这个情况下就不能拆边.不妨先按照所给的start和end的顺序,初步定下该无向边的顺序(若不当,一会再改).那么有个问题,我们需要先判断其是否存在欧拉回路先. 混合图不满足欧拉回路因素有:(1)一个点的度(无论有无向)是奇数的,那么其肯定不能满足出边数等于入边数.(2)有向边的出入度过…
The Euler function Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5028    Accepted Submission(s): 2123 Problem Description The Euler function phi is an important kind of function in number theo…
题意:三个正整数a + b + c = 1000,a*a + b*b = c*c.求a*b*c. 解法:可以暴力枚举,但是也有数学方法. 首先,a,b,c中肯定有至少一个为偶数,否则和不可能为以上两个等式均不会成立.然后,不可能a,b为奇c为偶,否则a*a%4=1, b*b%4=1, 有(a*a+b*b) %4 = 2,而c*c%4 = 0.也就是说,a和b中至少有一个偶数. 这是勾股数的一个性质,a,b中至少有一个偶数. 然后,解决过程见下(来自project euler的讨论): tag:m…
题意:给你一个图,有N个点,M条边,这M条边有的是单向的,有的是双向的. 问你能否找出一条欧拉回路,使得每条边都只经过一次! 分析: 下面转自别人的题解: 把该图的无向边随便定向,然后计算每个点的入度和出度.如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路.因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路. 好了,现在每个点入度和出度之差均为偶数.那么将这个偶数除以2,得x.也就是说,对于每一个点,只要将x条边改变方向(入>出就是变入,出>入就是变出),…
Little Joey invented a scrabble machine that he called Euler, after the great mathematician. In his primary school Joey heard about the nice story of how Euler started the study about graphs. The problem in that story was - let me remind you - to dra…
The Euler function Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submission(s) : 39   Accepted Submission(s) : 19 Font: Times New Roman | Verdana | Georgia Font Size: ← → Problem Description The Euler function…
UVALive - 3263 That Nice Euler Circuit (几何) ACM 题目地址:  UVALive - 3263 That Nice Euler Circuit 题意:  给出一个点,问连起来后的图形把平面分为几个区域. 分析:  欧拉定理有:设平面图的顶点数.边数.面数分别V,E,F则V+F-E=2  大白的题目,做起来还是非常有技巧的. 代码: /* * Author: illuz <iilluzen[at]gmail.com> * File: LA3263.cp…
商域无疆 (http://blog.csdn.net/omni360/) 本文遵循"署名-非商业用途-保持一致"创作公用协议 转载请保留此句:商域无疆 -  本博客专注于 敏捷开发及移动和物联设备研究:数据可视化.GOLANG.Html5.WEBGL.THREE.JS,否则,出自本博客的文章拒绝转载或再转载,谢谢合作. 下面代码是THREE.JS 源代码文件里Math/Quaternion.js文件的凝视. 很多其它更新在 : https://github.com/omni360/th…
题目链接:hdu 2824 The Euler function 题意: 让你求一段区间的欧拉函数值. 题解: 直接上板子. 推导过程: 定义:对于正整数n,φ(n)是小于或等于n的正整数中,与n互质的数的数目. 例如:φ(8)=4,因为1,3,5,7均和8互质. 性质:1.若p是质数,φ(p)= p-1. 2.若n是质数p的k次幂,φ(n)=(p-1)*p^(k-1).因为除了p的倍数都与n互质 3.欧拉函数是积性函数,若m,n互质,φ(mn)= φ(m)φ(n). 根据这3条性质我们就可以推…
题目大意: 给一个范围[1,n],从中找出两个数x,y,使得gcd(x,y)为质数,问有多少对(x,y有序) 解法: 不难,欧拉函数练手题,可以定义集合P ={x|x为素数},那么我们枚举gcd(x,y)可能等于的情况,对于任意p∈P可以得到:gcd(k1·p,k2·p) = p,当且仅当gcd(k1,k2) =1;那么我们就只需要枚举所有的k1,k2了.不妨设k1>k2,那么给定k1,k2的个数就是phi(k1),因为有序,所以给phi*2,但是,这样是否漏算了呢?没错,漏算了(1,1),补上…
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体证明看po主的博客 ^0^ #超时:这里直接用欧拉函数暴力搞还是不可以的,用到线性筛欧拉函数,这里总和爆int,要用long long */ #include<bits/stdc++.h> #define ll long long using namespace std; /***********…
欧拉函数: φ(n)=n*(1-1/p1)(1-1/p2)....(1-1/pk),其中p1.p2-pk为n的所有素因子.比如:φ(12)=12*(1-1/2)(1-1/3)=4.可以用类似求素数的筛法.(素数打表)先筛出n以内的所有素数,再以素数筛每个数的φ值.比如求10以内所有数的φ值:设一数组phi[11],赋初值phi[1]=1,phi[2]=2...phi[10]=10:然后从2开始循环,把2的倍数的φ值*(1-1/2),则phi[2]=2*1/2=1,phi[4]=4*1/2=2,p…
素数(Prime)及判定 定义 素数又称质数,一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数,否则称为合数. 1既不是素数也不是合数. 判定 如何判定一个数是否是素数呢?显然,我们可以枚举这个数的因数,如果存在除了它本身和1以外的因数,那么这个数就是素数. 在枚举时,有一个很简单的优化:一个合数\(n\)必有一个小于等于\(\sqrt{n}\)的因数. 证明如下: 假设一个合数\(n\)没有小于等于\(\sqrt{n}\)的因数. 由于\(n\)为合数,所以除了\(n\)与…
就是求混合图是否存在欧拉回路 如果存在则输出一组路径 (我就说嘛 咱的代码怎么可能错.....最后的输出格式竟然w了一天 我都没发现) 解析: 对于无向边定向建边放到网络流图中add(u, v, 1); 对于有向边放到另一个图中add2(u, v); 然后就是混合边求是否有欧拉 一边dinic后 遍历每一条边 如果不是反向边 且 起点不是s 终点不是t 如果Node[i].c == 0 则 add2(Node[i].v, Node[i].u); else add2(Node[i].u, Node…
试证明: 当流场为无旋, 即 $\rot{\bf u}={\bf 0}$ 时, 理想流体的 Euler 方程可写为如下形式: $$\bex \cfrac{\p {\bf u}}{\p t}+\n \cfrac{u^2}{2}+\cfrac{1}{\rho}\n p={\bf F}. \eex$$ 证明: 仅须注意到 $$\bex ({\bf u}\cdot\n){\bf u}=\Div({\bf u}\otimes{\bf u})= (\Div{\bf u}){\bf u}+\rot{\bf u…
函数文件1: function b=F(x0,h,u,tau) b(,)=x0()-u(); b(,)=x0()-u()+*h*1e8*cos(tau)*x0(); 函数文件2: function g=Jacobian(x0,h,tau) g(,)=; g(,)=; g(,)=; g(,)=+*h*1e8*cos(tau); 函数文件3: function x=Euler(h,x0,u,tau) % x0 表示迭代初值 % u 表示上一节点数值 tol=1e-; x1=x0-Jacobian(x…