【BZOJ-1367】sequence 可并堆+中位数】的更多相关文章

1367: [Baltic2004]sequence Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1111  Solved: 439[Submit][Status][Discuss] Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Output 13 HINT 所求的Z序列为6,7,8,13,14,15,18.R=13 这里是hyh的题解及严谨证明 这里…
1367: [Baltic2004]sequence Time Limit: 20 Sec   Memory Limit: 64 MB Submit: 521   Solved: 159 [ Submit][ Status] Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Output 13 HINT 所求的Z序列为6,7,8,13,14,15,18. R=13 左偏树+1 这题裸裸的左偏树,我却各种W…
1367: [Baltic2004]sequence Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 932  Solved: 348[Submit][Status][Discuss] Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Output 13 HINT 所求的Z序列为6,7,8,13,14,15,18.R=13 Source Solution 论文…
Description 给定一个序列\(t_1,t_2,\cdots,t_n\),求一个递增序列\(z_1<z_2<...<z_n\), 使得 \(R=|t_1−z_1|+|t_2−z_2|+\cdots +|t_n−z_n|\) 的值最小.求\(R\) Analysis 1.转化 \(z_1<z_2<...<z_n\)的小于号不爽 转化成\(z_1\le z_2\le...\le z_n\) 我们令\(i<j\), 根据条件我们有\(z_j-z_i\ge j-i…
BZOJ 1367 [Baltic2004]sequence Description 给定一个序列\(t_1,t_2,\dots,t_N\),求一个递增序列\(z_1<z_2<\dots<z_N\),使得\(R=|t_1-z_1|+|t_2-z_2|+\dots+|t_N-z_N|\)的值最小,本题中,我们只需求出这个最小的\(R\)值 Input 第\(1\)行为\(N(1\le N\le10^6)\) 第\(2\)行到第\(N+1\)行,每行一个整数.第\(K+1\)行为\(t_k(…
1367: [Baltic2004]sequence Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Output 13 HINT 所求的Z序列为6,7,8,13,14,15,18.R=13 Source [分析] 这题主要是要证明结论.详见hyh的论文. 先说说结论做法: 把序列分成m个区间,每个区间最后到达的值都是u.u为这个区间所有数的中位数. 先做一个小小的转化,题目要求b1<b2<...b3…
题面:BZOJ传送门 题目大意:给你一个序列$a$,让你构造一个递增序列$b$,使得$\sum |a_{i}-b_{i}|$最小,$a_{i},b_{i}$均为整数 神仙题.. 我们先考虑b不递减的情况 假设现在有一段单调的序列$A$ 如果$A$是递增的,显然$b[i]=a[i]$是最优解 如果$A$是递减的,$b$的每一项=序列$A$的中位数时是最优解 简单证明一下递减的情况: 1.序列$A$元素数量是奇数时,我们以中位数为对称轴,那么对称的两个数带来的贡献就是它们的差值,而中位数本身不会产生…
1367: [Baltic2004]sequence Time Limit: 20 Sec  Memory Limit: 64 MB Description Input Output 一个整数R Sample Input 7 9 4 8 20 14 15 18 Sample Output 13 HINT 所求的Z序列为6,7,8,13,14,15,18.R=13 详细证明请看IOI2005国家集训队论文  黄源河 https://wenku.baidu.com/view/20e9ff18964b…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1367 好题啊!论文上的题: 论文上只给出了不下降序列的求法: 先考虑特殊情况,如果原序列上升,那么答案序列相同即可,如果下降,那么答案序列取中位数: 那么对于跌宕起伏的原序列,可以先一个一个加入元素,每次加入一个作为一个新区间,中位数是自己: 因为答案序列要不下降,所以当前区间的中位数比前一个区间大的时候就要合并,归纳可知(感性理解)整个区间的答案是它们的中位数: 论文中有严谨证明:htt…
Description Input Output 一个整数R Sample Input 794820141518 Sample Output 13 HINT 所求的Z序列为6,7,8,13,14,15,18.R=13 /* 思维很扭曲(反正我想不出来)的一道题. 先想想不下降的: 考虑一个正序的序列,z[i]=t[i] 考虑一个逆序的序列,z[i]=x(x是逆列的中位数) 既然是这样那么我们就可以把整个序列化分成逆序的若干段,对于每段求中位数(正序的可看成num个逆序的). 维护中位数用左偏树,…