Floyd-Warshall算法正确性证明】的更多相关文章

我们用DP来求解任意两点间的最短路问题 首先定义状态:d[k][i][k]表示使用顶点1~k,i,j的情况下,i到j的最短路径 (d[0][i][j]表示只使用i和j,因此d[0][i][j] = cost[i][j]) 状态转移方程:d[k][i][j] = min ( d[k-1][i][k], d[k-1][k][j] ) 解释:我们分i到j的最短路正好经过顶点k一次和完全不经过k两种情况来讨论. 这个DP也可以使用滚动数组来进行递推:d[i][j] = min ( d[i][j], d[…
开始图论学习的第二部分:最短路径. 由于知识储备还不充足,暂时不使用邻接表的方法来计算. 最短路径主要分为两部分:多源最短路径和单源最短路径问题 多源最短路径: 介绍最简单的Floyd Warshall算法: 思路如下:把所有从顶点i到j可能经过的顶点一一枚举,不断更新从i到j的最小权值:d[i][j] = min{d[i][j],d[i][k]+d[k][j]},是一种动规的思想 局限性:不能处理有负权回路(负圈)的情况,而且一般是使用邻接矩阵的方式来实现. 优劣性:思路简单,核心代码简洁易懂…
题目链接:http://codeforces.com/gym/101873/problem/D 题意: 给出 $n$ 个事实,表述为 "XXX are worse than YYY".再给出 $m$ 个某人说的话,也是表述为 "XXX are worse than YYY",对于每句话都要判断是否正确: 如果正确,输出 "Fact":如果错误,输出 "Alternative Fact":如果无法判断,输出 "Pant…
看完这篇文章写的小程序,Floyd最短路径算法,求从一个点到另一个点的最短距离,中间可以经过其他任意个点.三个for循环,从i到j依次经过k的最短距离,最外层for循环是经过点K,内部两个循环是从i(0)到j(0,1,2,3)经过k(0)的最短距离,从i(1)到j(0,1,2,3)经过k(0)的最短距离,······,从i(3)到j(0,1,2,3)经过k(0)的最短距离:在经过k(0)的基础上再经过k(2),从i(0)到j(0,1,2,3)经过k(1)的最短距离,从i(1)到j(0,1,2,3…
1.引言 图的连通性问题是图论研究的重要问题之一,在实际中有着广泛的应用.例如在通信网络的联通问题中,运输路线的规划问题等等都涉及图的连通性.因此传递闭包的计算需要一个高效率的算法,一个著名的算法就是warshall在1962年提出的WarShall算法. 2.算法描述 使用n阶布尔矩阵\(R^{(k)}(0\leq k\leq n)\)来表示有向图中任意一对节点 是否含有路径的信息.因此,可将原问题划分为如下决策阶段: \[R^{(0)},R^{(1)},\cdots,R^{(k)},\cdo…
/** * * @author Zen Johnny * @date 2018年3月31日 下午8:13:09 * */ package freeTest; /* [动态规划系列:Warshall算法] 问题定义: 一个顶点有向图的传递闭包可以定义为一个n阶布尔矩阵T={t(i,j)}: 如果从第i个顶点之间存在一条有效的有向路径(即 长度大于0的有向路径), 矩阵第i行(1<=i<=n)第j列(1<=j<=n)的元素为1,否则为,t(i,j)为0 问题:计算有向图内各点传递闭包(…
题意:湖中有很多石头,两只青蛙分别位于两块石头上.其中一只青蛙要经过一系列的跳跃,先跳到其他石头上,最后跳到另一只青蛙那里.目的是求出所有路径中最大变长的最小值(就是在到达目的地的路径中,找出青蛙需要跳跃的最大边长的最小的值). 思路:warshall算法 hint:似懂非懂 课本代码: #include<iostream> #include<cmath> #include<stdio.h> #include<cstring> bool con[210][2…
传递闭包 在数学中,在集合 X 上的二元关系 R 的传递闭包是包含 R 的 X 上的最小的传递关系. 例如,如果 X 是(生或死)人的集合而 R 是关系“为父子”,则 R 的传递闭包是关系“x 是 y 的祖先”.再比如,如果 X 是空港的集合而关系 xRy 为“从空港 x 到空港 y 有直航”,则 R 的传递闭包是“可能经一次或多次航行从 x 飞到 y”. Warshall算法 Warshall在1962年提出了一个求关系的传递闭包的有效算法.其具体过程如下,设在n个元素的有限集上关系R的关系矩…
暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程. 上图中有4个城市8条公路,公路上的数字表示这条公路的长短.请注意这些公路是单向的.我们现在需要求任意两个城市之间的最短路程,也就是求任意两个点之间的最短路径.这个问题这也被称为“多源最短路径”问题. 现在需要一个数据结构来存储图的信息,我们仍然可以用一个4*4的矩阵(二维数组e)来存储.比如1号城市到2号城市的路程为2,则设e[1][2]…
Dijkstra算法 一.最短路径的最优子结构性质 该性质描述为:如果P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,k和s是这条路径上的一个中间顶点,那么P(k,s)必定是从k到s的最短路径.下面证明该性质的正确性. 假设P(i,j)={Vi....Vk..Vs...Vj}是从顶点i到j的最短路径,则有P(i,j)=P(i,k)+P(k,s)+P(s,j).而 P(k,s)不是从k到s的最短距离,那么必定存在另一条从k到s的最短路径P'(k,s),那么 P'(i,…