目录 一.对数几率和对数几率回归 二.Sigmoid函数 三.极大似然法 四.梯度下降法 四.Python实现 一.对数几率和对数几率回归   在对数几率回归中,我们将样本的模型输出\(y^*\)定义为样本为正例的概率,将\(\frac{y^*}{1-y^*}\)定义为几率(odds),几率表示的是样本作为正例的相对可能性.将几率取对便可以得到对数几率(log odds,logit). \[logit=\log\frac{y^*}{1-y^*} \]   而对数几率回归(Logistic Reg…
LR(对数几率回归) 函数为\(y=f(x)=\frac{1}{1+e^{-(w^{T}x+b)}}\). 由于输出的是概率值\(p(y=1|x)=\frac{e^{w^{T}x+b}}{1+e^{w^{T}x+b}},p(y=0|x)=\frac{1}{1+e^{w^{T}x+b}}\),所以求解使用极大似然估计来求解参数\(w,b\). 为了方便表示,记\(\widehat{w}=(w;b),\widehat{x}=(x;1)\) 写出似然函数\[\prod_{i=1}^{m}p(y=1|\…
目录 1. 对数几率回归 1.1 求解 ω 和 b 2. 对数几率回归进行垃圾邮件分类 2.1 垃圾邮件分类 2.2 模型评估 混淆举证 精度 交叉验证精度 准确率召回率 F1 度量 ROC AUC 1. 对数几率回归 考虑二分类任务,其输出标记 \(y \in \{0, 1\}\),记线性回归模型产生的预测值 \(z=\boldsymbol{w}^T\boldsymbol{x} + b\) 是实值,于是我们需要一个将实值 \(z\) 转换为 \(0/1\) 的 \(g^{-}(\cdot)\)…
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类.其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法. 代码如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2017-05-09 15:03:50 # @Author : whb (whb@bupt.edu.cn) # @Link : ${link} # @Version : $Id$ import numpy a…
logistic函数,也称sigmoid函数,概率分布函数.给定特定输入,计算输出"success"的概率,对回题回答"Yes"的概率.接受单个输入.多维数据或训练集样本特征,可以用线性回归模型表达式合并成单值. 损失函数可以使用平方误差.训练集"Yes"代表100%概率或输出值1的概率.损失刻画特定样本模型分配小于1值概率."No"概率值0.损失是模型分配样本概率值并取平方.平方误差惩罚与损失同数量级情形.输出与期望相差太远…
今天 学习了对数几率回归,学的不是很明白x1*theat1+x2*theat2...=y 对于最终的求解参数编程还是不太会,但是也大致搞明白了,对数几率回归是由于线性回归函数的结果并不是我们想要的,我们需要的或许只有是和不是,也就是0或1的关系,这时候我们就需要一个联系函数y=1/(1-e^(-1)) 作为桥梁这样我们就可以无限趋近于我们的0或者1. 然后就是参数估计,通过最大似然估计函数可以得到最简单的结果 最后还是需要通过梯度下降求得最终的解答 我学习的书是<机器学习西瓜书>周志华…
机器学习总结之逻辑回归Logistic Regression 逻辑回归logistic regression,虽然名字是回归,但是实际上它是处理分类问题的算法.简单的说回归问题和分类问题如下: 回归问题:预测一个连续的输出. 分类问题:离散输出,比如二分类问题输出0或1. 逻辑回归常用于垃圾邮件分类,天气预测.疾病判断和广告投放. 一.假设函数 因为是一个分类问题,所以我们希望有一个假设函数,使得: 而sigmoid 函数可以很好的满足这个性质: 故假设函数: 其实逻辑回归为什么要用sigmoi…
Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. LR 正则化 3.1 L1 正则化 3.2 L2 正则化 3.3 L1正则化和L2正则化的区别 4. RL 损失函数求解 4.1 基于对数似然损失函数 4.2 基于极大似然估计 二. 梯度下降法 1. 梯度 2. 梯度下降的直观解释 3. 梯度下降的详细算法 3.1 梯度下降法的代数方式描述 3.2…
机器学习(4)之Logistic回归 1. 算法推导 与之前学过的梯度下降等不同,Logistic回归是一类分类问题,而前者是回归问题.回归问题中,尝试预测的变量y是连续的变量,而在分类问题中,y是一组离散的,比如y只能取{0,1}. 假设一组样本为这样如图所示,如果需要用线性回归来拟合这些样本,匹配效果会很不好.对于这种y值只有{0,1}这种情况的,可以使用分类方法进行. 假设,且使得 其中定义Logistic函数(又名sigmoid函数): 下图是Logistic函数g(z)的分布曲线,当z…
原文链接:https://developers.google.com/machine-learning/crash-course/logistic-regression/ 逻辑回归会生成一个介于 0 到 1 之间(不包括 0 和 1)的概率值,而不是确切地预测结果是 0 还是 1. 1- 计算概率 许多问题需要将概率估算值作为输出.逻辑回归是一种极其高效的概率计算机制,返回的是概率(输出值始终落在 0 和 1 之间).可以通过如下两种方式使用返回的概率: “按原样”:“原样”使用返回的概率(例如…