原文:人像美妆---妆容迁移算法研究(Makeup transfer) 对于人像美妆算法,现在的美妆相机.玩美彩妆之类的app已经做的比较成熟了,但是具体算法,基本网络上是杳无可查,今天本人介绍一种自动的人像美妆算法----(Makeup Transfer)妆容迁移 妆容迁移相关的论文不多,有如下几篇: 1.Example-Based cosmetic transfer 2.Makeup Transfer using Multi-example 3.A new digtial face make…
美图又把一个拖累营收的业务转让出去了. 美图的电商业务——美图美妆应用在向用户发布终止运营的公告后,宣布把业务交给了寺库旗下公司 Try Try 运营.Try Try 接手了美图美妆的所有管理运营权,包括品牌推广.商品采购.销售.发货.客服等,美图则会继续用旗下的产品为美图美妆导流,并可以获得保底收益和分成收益. 除了运营美图美妆业务,寺库创始人兼 CEO 李日学还说会把美图的 AI 测肤功能融入寺库的业务. 寺库是一家主营奢侈品电商业务的公司,于 2017 年 9 月在美国纳斯达克上市,截止…
原文:MugLife静态照片变3D动画算法研究 MugLife app是一款可以将静态照片变成3D动画的手机应用,如下效果图所示: 大家可以看到,这个静态图具有了类3D的动画特效,是不是很好玩? 这种算法是如何实现的呢? 这里给出一篇论文"Bringing Portraits to Life"Siggraph Asia 2017 这篇论文就是通过二维图像算法来实现静态图的3D动画效果的. 下面我们来讲解一下具体的算法实现过程: 首先根据一段视频,将目标静态图动画处理 整体流程: 将视频…
原文:照片美妆---基于Haar特征的Adaboost级联人脸检测分类器 本文转载自张雨石http://blog.csdn.net/stdcoutzyx/article/details/34842233 基于Haar特征的Adaboost级联人脸检测分类器 基于Haar特征的Adaboost级联人脸检测分类器,简称haar分类器.通过这个算法的名字,我们可以看到这个算法其实包含了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 H…
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要:   在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据,一定要在相同的特征空间并且具有相同的分布.然而,在许多现实的应用案例中,这个假设可能不会成立.比如,我们有时候在某个感兴趣的领域有个分类任务,但是我们只有另一个感兴趣领域的足够训练数据,并且后者的数据可能处于与之前领域不同的特征空间或者遵循不同的数据分布.这类情况下,如果知识的迁移做的成功,我们将…
Reinhard颜色迁移算法的过程很简单,流程如下,细节部分见原文,题目为color transfer between images: 将参考图片和目标图片转换到LAB空间下 得到参考图片和目标图片的均值和标准差 对目标图片的每一个像素值,减去目标图像均值然后乘上参考图片和目标图片标准差的比值,再加上参考图像均值 将目标图片转换到RGB空间 将RGB图片转换到LAB空间很重要,因为LAB空间能降低三原色之间的相关性,如果不转换,结果会有很大的不同 # -*- coding: utf-8 -*-…
程序员面试.算法研究.编程艺术.红黑树.数据挖掘5大经典原创系列集锦与总结 http://blog.csdn.net/v_july_v/article/details/6543438…
作者 | 钱坤 钱坤,腾讯后台开发工程师,从事领域为流媒体CDN相关,参与腾讯TVideo平台开发维护. 原文是<Algorithmic Nuggets in Content Delivery>.这篇文章是akamai15年的文章,里面介绍了一些akamai在内容分发网络中的算法研究,下面对论文中的这些算法进行简单的总结.水平有限有限,有理解错误的还望指正. ps:并不是所有的算法都已经投入到了实用阶段. BLOOM FILTERS Bloom filters的研究主要用在akamai的CDN…
July   二零一一年一月 本文主要参考:算法导论 第二版.维基百科. 一.Dijkstra 算法的介绍 Dijkstra 算法,又叫迪科斯彻算法(Dijkstra),算法解决的是有向图中单个源点到其他顶点的最短路径问题.举例来说,如果图中的顶点表示城市,而边上的权重表示著城市间开车行经的距离,Dijkstra 算法可以用来找到两个城市之间的最短路径. 二.图文解析 Dijkstra 算法 ok,经过上文有点繁杂的信息,你还并不对此算法了如指掌,清晰透彻.没关系,咱们来幅图,就好了.请允许我再…
摘要 随着信息技术的不断发展,人类可以很容易地收集和储存大量的数据,然而,如何在海量的数据中提取对用户有用的信息逐渐地成为巨大挑战.为了应对这种挑战,数据挖掘技术应运而生,成为了最近一段时期数据科学的和人工智能领域内的研究热点.数据集中的频繁模式作为一种有价值的信息,受到了人们的广泛关注,成为了数据挖掘技术研究领域内的热门话题和研究重点. 传统的频繁模式挖掘技术被用来在事务数据集中发现频繁项集,然而随着数据挖掘技术应用到非传统领域,单纯的事务数据结构很难对新的领域的数据进行有效的建模.因此,频繁…