HDU 5446 Unknown Treasure 题意:求C(n, m) %(p[1] * p[2] ··· p[k])     0< n,m < 1018 思路:这题基本上算是模版题了,Lucas定理求C(n,m),再用中国剩余定理合并模方程,因为LL相乘会越界,所以用到按位乘. #include <iostream> #include <cstdio> #include <fstream> #include <algorithm> #inc…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 题目大意:求C(n, m) % M, 其中M为不同素数的乘积,即M=p1*p2*...*pk, 1≤k≤10.1≤m≤n≤10^18. 分析: 如果M是素数,则可以直接用lucas定理来做,但是M不是素数,而是素数的连乘积.令C(n, m)为 X ,则可以利用lucas定理分别计算出 X%p1,X%p2, ... , X % pk的值,然后用中国剩余定理来组合得到所求结果. 比较坑的地方是,…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 Unknown Treasure 问题描述 On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere…
Unknown Treasure Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5446 Description On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician ent…
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 2209    Accepted Submission(s): 821 Problem Description On the way to the next secret treasure hiding place, the mathematician…
题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.....,pk)取余. 解题思路: Lucas + 中国剩余定理,注意的是中国剩余定理的时候有可能会爆long long.然后用一个快速加法就好辣. #include <cstdio> #include <cstring> #include <iostream> #inclu…
题目链接 求C(n, m)%p的值, n, m<=1e18, p = p1*p2*...pk. pi是质数. 先求出C(n, m)%pi的值, 然后这就是一个同余的式子. 用中国剩余定理求解. #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> using namespace std; #define l…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5446 [题目大意] 给出一个合数M的每一个质因子,同时给出n,m,求C(n,m)%M. [题解] 首先我们可以用Lucas定理求出对答案对每个质因子的模,然后我们发现只要求解这个同余方程组就可以得到答案,所以我们用中国剩余定理解决剩下的问题. [代码] #include <cstdio> #include <cstring> #include <algorithm> u…
Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number of primes. Following on the next line are kdifferent primes p1,...,pk. It is guaranteed that M=p1⋅p2⋅⋅⋅pk≤1018 and pi≤105 for every i∈{1,...,k}.   Outp…
Problem Description On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a com…
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 721    Accepted Submission(s): 251 Problem Description On the way to the next secret treasure hiding place, the mathematician d…
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Problem Description On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician…
代码: #include"bits/stdc++.h" #define db double #define ll long long #define vec vector<ll> #define Mt vector<vec> #define ci(x) scanf("%d",&x) #define cd(x) scanf("%lf",&x) #define cl(x) scanf("%lld&qu…
题目描述 n个人在w*h的监狱里面想要逃跑,已知他们的同伙在坐标(bi,h)接应他们,他们现在被关在(ai,1)现在他们必须要到同伙那里才有逃出去的机会,这n个人又很蠢只会从(x,y)->(x+1,y),(x,y+1)并且这他们走过的路径不能相交如果相交第一个经过后就会有第二个人经过时候就会有一名狱警在那等他,第二个人就会被抓,假设他们不会同时踩到某个格子,那么他们的逃跑路线有多少不同的方案数.如果两个方案不同那么存在一个人踩的格子至少有一个是另外一个方案的没踩过 输入 第一行一个t(t<=2…
题目传送门 题意:很裸,就是求C (n, m) % (p1 * p2 * p3 * .... * pk) 分析:首先n,m<= 1e18, 要用到Lucas定理求大组合数取模,当然p[]的乘积<=1e18不能直接计算,但是pi<=1e5.接下来要知道中国剩余定理,所以先对每个pi计算出bi,注意在中国剩余定理的两数相乘会爆long long,所以用乘法取模,"但是这样的话exgcd返回值如果是负数就会出错,所以乘之前要取模成正的",这句话不是很懂. 收获:老祖宗的智慧…
1. 题目描述题目很简单,就是求$C(n,m) % M$. 2. 基本思路这是一道应用了众多初等数论定理的题目,因为数据范围较大因此使用Lucas求$C(n,m) % P$.而M较大,因此通过$a[i] = C(n,m)%P_i$再综合中国剩余定理可解.由于数据可能为$10^{18}$,再进行乘法可能超long long.因此,还需要模拟乘法. 3. 代码 /* 5446 */ #include <iostream> #include <sstream> #include <…
题意:……应该不用我说了,看起来就很容斥原理,很中国剩余定理…… 方法:因为题目中的n最大是15,使用状态压缩可以将所有的组合都举出来,然后再拆开成数组,进行中国剩余定理的运算,中国剩余定理能够求出同时满足余膜条件的最小整数x,x在(1,M)之间由唯一值,M是各个除数的乘积,所有符合条件的解为ans = x+k*M,可以知道在[1,R]这个区间内,有(M+R-x)/ M个k符合条件,然后在运算中为了防止溢出,所以使用了带膜乘法,就是将乘数转化为二进制,通过位移运算符,在中间过程中不断的取膜(看代…
X问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 8354    Accepted Submission(s): 3031 Problem Description 求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mo…
<题目链接> 题目大意: 给你一些模数和余数,让你求出满足这些要求的最小的数的值. 解题分析: 中国剩余定理(模数不一定互质)模板题 #include<stdio.h> using namespace std; #define ll long long ll A[],B[];//B[i]为余数 ll dg,ans;//dg为A[i]的最小公倍数 ans 为最小解 void exgcd(ll a, ll b, ll &d, ll&x, ll &y) { ; y…
>On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and s…
数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit][Status][Discuss] Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久很久以前,在山的那边海的那边的某片风水宝地曾经存在过一个猪王国.猪王国地…
http://acm.hdu.edu.cn/showproblem.php?pid=5768 Lucky7 Problem Description   When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its bod…
题目链接 题意 : 中文题不详述. 思路 : 中国剩余定理.求中国剩余定理中解的个数.看这里看这里 #include <stdio.h> #include <iostream> #include <math.h> using namespace std ; long long x,y ; long long N,M ; long long ext_gcd(long long a,long long b) { long long t,d ; ) { x = ; y = ;…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:给出n.求n有多少种划分集合的方式,即bell(n) 思路: #include <iostream>#include <cstdio>#include <string.h>#include <algorithm>#include <cmath>#include <vector>#include <queue>#in…
只是套模板而已(模板其实也不懂). 留着以后好好学的时候再改吧. 题意—— X = a[i] MOD b[i]; 已知a[i],b[i],求在[1, n]中存在多少x满足条件. 输入—— 第一行一个整数t,表示一共t组数据. 第二行两个整数n,m,表示在n以内寻找满足的数,一共m组方程组. 输出—— 一个整数.如果存在满足的x,则输出x的数量.否则输出0. 直接给代码吧—— #include <cstdio> #include <iostream> #include <cma…
题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以$\varphi(p)=p-1$ 利用欧拉定理,降幂化简式子$G^{\sum_{m|n} C_{n}^{m}\;mod\;\varphi(p)}$ 这样,指数部分可以用$Lucas$+中国剩余定理求解 然而..$G>10^9$很大,可能和模数$999911659$不互质!所以质数要额外加上$\varph…
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 2389    Accepted Submission(s): 885 Problem Description On the way to the next secret treasure hiding place, the mathematician…
链接: hdu 5446 http://acm.hdu.edu.cn/showproblem.php?pid=5446 题意: 给你三个数$n, m, k$ 第二行是$k$个数,$p_1,p_2,p_3 \cdots p_k$ 所有$p$的值不相同且p都是质数 求$C(n, m) \ \%\  (p_1*p_2*p_3* \cdots *p_k)$的值 范围:$1\leq m\leq n\leq 1e18,\ 1\leq k\leq 10,p_i\leq 1e5$,保证$p_1*p_2*p_3*…
题意:M=p1*p2*...pk:求C(n,m)%M,pi小于10^5,n,m,M都是小于10^18. pi为质数 M不一定是质数 所以只能用Lucas定理求k次 C(n,m)%Pi最后会得到一个同余方程组x≡B[0](mod p[0])x≡B[1](mod p[1])x≡B[2](mod p[2])......解这个同余方程组 用中国剩余定理 Sample Input19 5 23 5 Sample Output6 # include <iostream> # include <cst…
题目链接:https://nanti.jisuanke.com/t/A1842 题目大意:给定整数n,m,k,其中1≤m≤n≤1018,k≤10, 然后给出k个素数,保证M=p[1]*p[2]……*p[k]≤1018,p[i]≤105 求C(n,m)%(p[1]*p[2]……*p[k]) 解题思路:因为模数太大,所以我们先用卢卡斯定理求出对每个素数的模,然后再通过中国剩余定理就可以求得对它们的乘积的模. 代码: #include<bits/stdc++.h> using namespace s…