[luogu4161 SCOI2009]游戏 (DP)】的更多相关文章

传送门 Solution 可以发现实际上是把n分为几个循环节,然后找循环节的\(lcm\)是这次的排数 而\(lcm\)必然是一些最高次幂的质数的成积,那么就dp求一下所有情况就好了 PS:注意并不是必须要等于n小于n都行,因为可以在后面补1而\(lcm\)不变 Code #include <cmath> #include <cstdio> #include <cstdlib> #include <cstring> #include <iostream…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目中的排数就是多少次回到原来的序列.很显然对于题目所描述的任意一种对应法则,其中一定有一个或者多个循环节. 设有$m$个循环节,每个循环节的大小为$A_i$,则回到最开始的序列需要置换$lcm\{A_i\} (i=1->m)$次. 于是问题变成了求$n=\sum_{i=1}^mA_i$,且$lcm\{A_i\} (i=1->m)$各不相同的$\{A\}$有多少种. 我们可以用一…
题意: 若$a_1+a_2+\cdots+a_h=n$(任意h<=n),求$lcm(a_i)$的种类数 思路: 设$lcm(a_i)=x$, 由唯一分解定理,$x=p_1^{m_1}+p_2^{m_2}+\cdots+p_{tot}^{m_{tot}}$ 设$b_i=p_i^{m_i}$, 则能组成x的和最小的数为$\sum p_i^{m_i}$ 所以只要$\sum p_i^{m_i}\leq n$即可, 其中小于的时候,剩余补1即可 dp[i][j]表示选了前i个素数,他们的和为j时的方法数…
题目大意:将长度为n的排列作为1,2,3,...,n的置换,有可能置换x次之后,序列又回到了1,2,3,...,n,求所有可能的x的个数. 看见这种一脸懵逼的题第一要务当然是简化题意...我们可以发现,序列回到原状的次数就是每个循环的规模(即在循环中的数字个数)的lcm,而且因为有n个数,显然所有循环的规模之和就是n,那么问题就被简化成了a1+a2+a3+...+ak=n,求lcm(a1,a2,a3,...,an)的个数. 现在题意已经清楚多了,那咋写呢QAQ 我们把一个数分解质因数,p为质数,…
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai,不足n的话,我们令其他循环长度为1, 补到=n为止. 这样它们的lcm显然是=m的. 然后就是一个背包了...dp(i, j) = dp(i - 1, j) + ∑1≤t≤adp( i - 1, j - pt ) 表示前i个质数, 和为j有多少中方案 #include<bits/stdc++.h>…
1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1065  Solved: 673[Submit][Status] Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对应的数字.然后又在新的一排下面写上它们对应的数字.如此反复,直到序列再次变为1,2,3,……,N.…
1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][Discuss] Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按顺序1,2,3,……,N写一排在纸上.然后再在这一排下面写上它们对应的数字.然后又在新的一排下面写上它们对应的数字.如此反复,直到序列再次变为1,2…
[BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数,他们的\(lcm\)有多少种不同的情况.那么显然还可以变成有多少个数的\(\sum_{i}p_i^{a_i}\le n\) 这样子随便\(dp\)一下就好了. #include<iostream> #include<cstdio> using namespace std; #defi…
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个定理: 若Z可以作为几个数最小公倍数, 令 Z=p1^a1 * p2^a2 * ……  pi为质数 那么 当这几个数 的分别为 p1^a1  , p2^a2 …… 时, 这几个数的和最小,为Σ pi^ai 所以可以得出 如果将这个和最小化 之后 <=n ,那么 这个Z就能取到 (和小于n可以补1)…
[SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 1005 #define ll long long int n,num; ll dp[maxn][maxn],pi[maxn]; bool if_p[maxn]; void euler(int limit) { ;i<=limit;i++) { if(!if_p[i]) pi[++n…