BZOJ 3143 高斯消元+贪心....】的更多相关文章

思路: 先算一下每条边经过次数的期望 转化为每个点经过次数的期望 边的期望=端点的期望/度数 统计一下度数 然后高斯消元 贪心附边权--. //By SiriusRen #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; #define eps 1e-10 int n,m,d[250050];double a[505][…
题意; 有n个装备,每个装备有m个属性,每件装备的价值为cost. 小哥,为了省钱,如果第j个装备的属性可以由其他准备组合而来.比如 每个装备属性表示为, b1, b2.......bm . 它可以由其他2个装备组合而成,则 b1=k1*a1+h1*c1.  b2=k1*a2+h2*c1.......bm=km*am+hm*cm这样的话,把属性看做是向量,是不是相当于2个m维度的向量,线性的表示了第三个向量呢? 那么,题目的意思就是在n个向量中,找出一组基,并且这一组基的价值和最小. 这相当于把…
假如我们知道了每条边经过的期望次数,则变成了一个显然的贪心.现在考虑如何求期望次数. 由于走到每个点后各向等概率,很显然一条边的期望次数可以与它的两个端点的期望次数,转化为求点的期望次数 考虑每个点对另个点的贡献,得到方程组,暴力高斯消元 注意走到最后一个点就结束了,所以相当于它不能有出边 #include <bits/stdc++.h> #define eps 1e-6 using namespace std; const int N = 1005; double a[N][N]; int…
题意: 告诉你一个K维球体球面上的K+1个点问球心坐标. sol: 乍一看还以为是K维的二分答案然后判断距离...真是傻逼了...你看乱七八糟的题目做多了然后就会忘记最有用的基本计算... 我们可以看到,假设圆心O,根据他告诉我们的公式我们可以得到给出任意两个点和圆心的一个方程,这个方程有k个未知数,那么我们随意构造K个方程然后跑一跑高斯消元. 机械工业的线代还是挺清楚易懂的...每次枚举到一个主元行就把下面每一个都消了...恩...比较直观... 因为最后一个换行还PE了一发...有点醉= =…
思路: 高斯消元就好啦 注意每个格子最多只能和4个相邻 所以是 n*m*n*m*5 的 并不会TLE //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int n,m,a[44][44],xx[]={0,0,1,-1,0},yy[]={1,-1,0,0,0},eli[1666][1666],b[1666],ans[1666]; int…
思路: 排个序 消元 完事~ 但是! 坑爹精度毁我人生 我hhhh他一脸 红红火火恍恍惚惚 //By SiriusRen #include <cmath> #include <cstdio> #include <algorithm> using namespace std; #define double long double const int N=505;const double eps=1e-8; int n,m,vis[N],ans2;double ans; s…
装备购买 题目 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示 (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘算着 怎样才能花尽量少的钱买尽量多的装备.对于脸哥来说,如果一件装备的属性能用购买的其他装备组合出(也就是 说脸哥可以利用手上的这些装备组合出这件装备的效果),那么这件装备就没有买的必要了.严格的定义是,如果 脸哥买了 z…
题目大意: 每条路径上有一个距离值,从1走到N可以得到一个所有经过路径的异或和,求这个异或和的数学期望 这道题直接去求数学期望的DP会导致很难列出多元方程组 我们可以考虑每一个二进制位从1走到N的平均概率值 因为整个图是联通的那么所有点都默认会处于多元方程组中 Pi = p[i] * sigma( v&d[i][j]?(1-Pj):Pj) v是当前二进制位代表的数值 这里需要注意的是自环的加边情况,自环只加一次边,不能向平时那样加无向边一样 #include <cstdio> #inc…
思路: //By SiriusRen #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int inf=0x7fffffff,mod=10086; int n,a[100050],q,flag=1,rec[66],ans; void Gauss(){ for(int i=30,j;~i;i--){ for(j=flag;j<=n;j++)if(a…
思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorithm> using namespace std; int n,flag=1,ans,a[100050]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%d",&a[i]); f…