假如有这样一道题目:要给一个M行N列的网格涂上K种颜色,其中有B个格子不用涂色,其他每个格子涂一种颜色,同一列中的上下两个相邻格子不能涂相同颜色.给出M,N,K和B个格子的位置,求出涂色方案总数除以1e8+7的结果R. 本题的任务和这个相反:已知N,K,R和B个格子的位置,求最小可能的M. 蓝书(大白)上的例题,设xm为不能涂色的格子的最大x值,则分三种情况讨论:M=xm,M=xm+1,M>xm+1.前两种用组合公式直接算,第三种可设前xm+1行的格子涂色方法有n种,由于每增加一行,总涂色方案数…
UVA 11916 BSGS的一道简单题,不过中间卡了一下没有及时取模,其他这里的100000007是素数,所以不用加上拓展就能做了. 代码如下: #include <cstdio> #include <iostream> #include <algorithm> #include <cstring> #include <vector> #include <cmath> #include <map> using names…
LRJ白书上的题 #include <stdio.h> #include <iostream> #include <vector> #include <math.h> #include <set> #include <map> #include <queue> #include <algorithm> #include <string.h> #include <string> using…
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3067 题意:用K种颜色给一个N*M的格子涂色.其中有B个格子是不能涂色的.涂色时满足同一列上下紧邻的两个格子的颜色不同.所有的涂色方案模100000007后为R.现在给出M.K.B.R,求一个最小的N,满足题意. 思路:设给出的B个不能涂的格子的最大行坐标为maxX.首先,我们能计…
题意:用K种颜色给一个N*M的格子涂色.其中有B个格子是不能涂色的.涂色时满足同一列上下紧邻的两个格子的颜色不同.所有的涂色方案模100000007后为R.现在给出M.K.B.R,求一个最小的N,满足题意. 思路:分成两个部分.设给出的B个不能涂的格子的最大行坐标为m. 首先,我们能计算出前m行的方案数cnt,若cnt=r,则m就是答案.每增加一行,就会增加(K-1)^m种方法,接着令p=(K-1)^M,我们能计算出前m+1行的方案数cnt,若cnt=r 则答案为 m+1.否则,设下面还需要t行…
转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud  Emoogle Grid  You have to color an MxN ( 1M, N108) two dimensional grid. You will be provided K ( 2K108) different colors to do so. You will also be provided a list of B ( 0B500) list of blo…
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色棋子,小B可以移动黑色的棋子,他们每次操作可以移动1到d个棋子. 每当移动某一个棋子时,这个棋子不能跨越两边的棋子,当然也不可以出界.当谁不可以操作时,谁就失败了. 小A和小B轮流操作,现在小A先移动,有多少种初始棋子的布局会使他胜利呢? [输入格式] 共一行,三个数,n,k…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 用斯特林数容斥原理推导那个式子可以直接出卷积形式,见下一篇,本篇是分治fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 Bell数 \(B(n)=\sum\limits_{i=…
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林数 \] 首先你要把这个组合计数肝出来,于是我去翻了一波<组合数学> 分治fft做法见上一篇,本篇是容斥原理+fft做法 组合计数 斯特林数 \(S(n,i)\)表示将n个不同元素划分成i个相同集合非空的方案数 考虑集合不相同情况\(S'(n,i)=S(n,i)*i!\),我们用容斥原理推♂倒她…
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边(看样例图解就知道了) 那么大力猜想一下第一问的答案一定是\(n-3-\)和\(n\)号点直接相连的边数. 手玩一下,发现这样一件事情:和\(n\)直接相连的所有边把多边形分割成了若干个区间,每个区间都用\([l,r]\)表示. 对于\([l,r]\)这个区间,因为已经分割出来了,也就是除了\(l-n…