# -*- coding: utf-8 -*-"""Fourmi Editor This is a temporary script file."""import cv2import osimport numpy as npimport randomimport math def disOrdeImgs(Imgpath,Labelpath,orgTrainPath,orgTestPath,labelTrainPath,labelTestPath)…
前言 java开发中经常遇到对图片的处理,JDK中也提供了对应的工具类,不过处理起来很麻烦,Thumbnailator是一个优秀的图片处理的开源Java类库,处理效果远比Java API的好,从API提供现有的图像文件和图像对象的类中简化了处理过程,两三行代码就能够从现有图片生成处理后的图片,且允许微调图片的生成方式,同时保持了需要写入的最低限度的代码量.还支持对一个目录的所有图片进行批量处理操作,下边就和大家分享一下java中用Thumbnailator做图片各种处理的方法(相关jar包可在最…
WPF中图像控件Image的变换属性Transform: 平移 缩放 旋转 即要想实现图片的平移.缩放.旋转,是修改它所在的Image控件的Transform变换属性. 下面在XAML中定义了Image图片的Transform属性. <Image> <Image.RenderTransform> <TransformGroup> <TranslateTransform/> <ScaleTransform/> <RotateTransform…
Python图像处理库 - Albumentations,可用于深度学习中网络训练时的图片数据增强. Albumentations 图像数据增强库特点: 基于高度优化的 OpenCV 库实现图像快速数据增强. 针对不同图像任务,如分割,检测等,超级简单的 API 接口. 易于个性化定制. 易于添加到其它框架,比如 PyTorch. 1. Albumentations 的 pip 安装 sudo pip install albumentations # 或 sudo pip install -U…
数据增强在机器学习中的作用不言而喻.和图片分类的数据增强不同,训练目标检测模型的数据增强在对图像做处理时,还需要对图片中每个目标的坐标做相应的处理.此外,位移.裁剪等操作还有可能使得一些目标在处理后只有一小部分区域保留在原图中,这需要额外的机制来判断是否需要去掉该目标来训练模型.为此TensorLayer 1.7.0(tf>=1.4 && tl>=1.7)发布中,提供了大量关于目标检测任务的数据集下载.目标坐标处理.数据增强的API.最近的几次发布主要面向新的卷积方式(Defo…
1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟合. 在计算机视觉中,典型的数据增强方法有翻转(Flip),旋转(Rotat ),缩放(Scale),随机裁剪或补零(Random Crop or Pad),色彩抖动(Color jittering),加噪声(Noise) 笔者在跟进视频及图像中的人体姿态检测和关键点追踪(Human Pose Es…
数据增强 在图像的深度学习中,为了丰富图像训练集,更好的提取图像特征,泛化模型(防止模型过拟合),一般都会对数据图像进行数据增强,数据增强,常用的方式,就是旋转图像,剪切图像,改变图像色差,扭曲图像特征,改变图像尺寸大小,增强图像噪音(一般使用高斯噪音)等,但需要注意,不要加入其它图像轮廓的噪音.在不同的任务背景下,我们可以通过图像的几何变换,使用一下一种或者多种组合数据增强变换来增加输入数据的量. 旋转|反射变换(Rotation/reflection):随机旋转图像一定角度:改变图像的内容朝…
Augmentor和imgaug--python图像数据增强库 Tags: ComputerVision Python 介绍两个图像增强库:Augmentor和imgaug,Augmentor使用比较简单,只有一些简单的操作. imgaug实现的功能更多,可以对keypoint, bounding box同步处理,比如你现在由一些标记好的数据,只有同时对原始图片和标记信息同步处理,才能有更多的标记数据进行训练.我在segmentation和detection任务经常使用imgaug这个库. Au…
几何变换 flip:水平翻转,也叫镜像:垂直翻转 rotation:图片旋转一定的角度,这个可以通过opencv来操作,各个框架也有自己的算子 crop:随机裁剪,比如说,在ImageNet中可以将输入图片进行裁剪,然后输入. 颜色变换 hue:灰度调节, contrast:在图像的HSV颜色空间,改变H,S和V亮度分量,增加光照变化.对光照有特殊要求的可以使用 saturation:图像饱和度 exposure:增加曝光 多个区域置零 random erase:随机擦除,将图片中的某个区域置零…
上一期中讲解了图像分类和目标检测中的数据增强的区别和联系,这期讲解数据增强的进阶版- yolov4中的Mosaic数据增强方法以及CutMix. 前言 Yolov4的mosaic数据增强参考了CutMix数据增强方式, 是CutMix数据增强方法的改进版.不同于一般的数据增强的方式是对一张图片进行扭曲.翻转.色域变化,CutMix数据增强方式是对两张图片进行拼接变为一张新的图片,然后将拼接好了的图片传入到神经网络中去学习,如下图. CutMix的处理方式比较简单,对一对图片做操作,简单讲就是随机…