Spark中常见的三种分类模型:线性模型.决策树和朴素贝叶斯模型. 线性模型,简单而且相对容易扩展到非常大的数据集:线性模型又可以分成:1.逻辑回归:2.线性支持向量机 决策树是一个强大的非线性技术,训练过程计算量大并且较难扩展(幸运的是,MLlib会替我们考虑扩展性的问题),但是在很多情况下性能很好: 朴素贝叶斯模型简单.易训练,并且具有高效和并行的优点(实际中,模型训练只需要遍历所有数据集一次).当采用合适的特征工程,这些模型在很多应用中都能达到不错的性能.而且,朴素贝叶斯模型可以作为一个很…
库名称 开发语言 支持接口 安装难度(ubuntu) 文档风格 示例 支持模型 上手难易 Caffe c++/cuda c++/python/matlab *** * *** CNN ** MXNet c++/cuda python/R/Julia ** *** ** CNN/RNN * TensorFlow c++/cuda/python c++/python * ** * CNN/RNN/… *** 安装难度: (简单) –> **(复杂) 文档风格: (一般) –> **(好看.全面)…
一对多(One-vs-Rest classifier) 将只能用于二分问题的分类(如Logistic回归.SVM)方法扩展到多类. 参考:http://www.cnblogs.com/CheeseZH/p/5265959.html “一对多”方法 训练时依次把某个类别的样本归为一类,其他剩余的样本归为另一类,这样k个类别的样 本就构造出了k个binary分类器.分类时将未知样本分类为具有最大分类函数值的那类. 假如我有四类要划分(也就是4个Label),他们是A.B.C.D. 于是我在抽取训练集…
理论原理部分可以看这一篇:http://www.cnblogs.com/charlesblc/p/6109551.html 这里是实战部分.参考了 http://www.cnblogs.com/shishanyuan/p/4747778.html 采用了三个案例,分别对应聚类.回归和协同过滤的算法. 我觉得很好,需要每一个都在实际系统中试一下. 更多api介绍可以参考 http://spark.apache.org/docs/2.0.1/ml-guide.html 1.1 聚类实例 1.1.1 …
一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.Cover和Hart在1968年提出了最初的邻近算法.KNN是一种分类(classification)算法,它输入基于实例的学习(instance-based learning),属于懒惰学习(lazy learning)即KNN没有显式的学习过程,也就是说没有训练阶段,数据…
1.机器学习算法(九): 基于线性判别模型的LDA手写数字分类识别 1.1 LDA算法简介和应用 线性判别模型(LDA)在模式识别领域(比如人脸识别等图形图像识别领域)中有非常广泛的应用.LDA是一种监督学习的降维技术,也就是说它的数据集的每个样本是有类别输出的.这点和PCA不同.PCA是不考虑样本类别输出的无监督降维技术.LDA的思想可以用一句话概括,就是"投影后类内方差最小,类间方差最大".我们要将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数…
weka提供了几种处理数据的方式,其中分类和回归是平时用到最多的,也是非常容易理解的,分类就是在已有的数据基础上学习出一个分类函数或者构造出一个分类模型.这个函数或模型能够把数据集中地映射到某个给定的类别上,从而进行数据的预测.就是通过一系列的算法,将看起来本来分散的数据,给划分成一个个不同的类,我们可以知道某个数据为什么要划分到这个类别,后来的数据通过这个过程就可以知道把它划分到哪个类别,从而进行了数据的预测. 要进行分类,我们根据什么分类,这就需要把数据分为训练集和测试集两个部分,先分析训练…
卷积神经网络:下面要说的这个网络,由下面三层所组成 卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码说明: 代码主要有三部分组成 第一部分: 数据读入 第二部分:模型的构建,用于生成loss和梯度值 第三部分:将数据和模型输入,使用batch_size数据进行模型参数的训练 第一部分:数据读入 第一步:输入文件的地址 第二步: 创建列表,用于文件数据的保存 第三步:使用pickle.load进行数…
函数说明 1.LDA(n_topics, max_iters, random_state)  用于构建LDA主题模型,将文本分成不同的主题 参数说明:n_topics 表示分为多少个主题, max_iters表示最大的迭代次数, random_state 表示随机种子 2. LDA.components_ 打印输入特征的权重参数, LDA主题模型:可以用于做分类,好比如果是两个主题的话,那就相当于是分成了两类,同时我们也可以找出根据主题词的权重值,来找出一些主题的关键词 使用sklearn导入库…
作业说明 Exercise 3,Week 4,使用Octave实现图片中手写数字 0-9 的识别,采用两种方式(1)多分类逻辑回归(2)多分类神经网络.对比结果. (1)多分类逻辑回归:实现 lrCostFunction 计算代价和梯度.实现 OneVsAll 使用 fmincg 函数进行训练.使用 OneVsAll 里训练好的 theta 对 X 的数据类型进行预测,得到平均准确率. (2)多分类神经网络:两层 theta 权重值在 ex3weights 里已提供.参数不需要调,只需要在 pr…