语言模型:GPT与HuggingFace的应用】的更多相关文章

ChatGPT的那些事 -1- 背景资料 多处搬运,学无止境 目     录 1  关键词 1 1.1.  AIGC(百度百科) 1 1.2.  AlphaGo(百度百科) 1 1.3.  ChatGPT(百度百科) 1.4. DALL-E / DALL-E 2 1.5  DeepMind 2(百度百科) 1.6.  FAIR 3 1.7.  NLP(自然语言处理)技术 (百度百科) 3 1.8.  OpenAI (百度百科) 4 2.  背景介绍 4 2.1.  ChatGPT的前世今生 5…
1. 引言 在介绍论文之前,我将先简单介绍一些相关背景知识.首先是语言模型(Language Model),语言模型简单来说就是一串词序列的概率分布.具体来说,语言模型的作用是为一个长度为m的文本确定一个概率分布P,表示这段文本存在的可能性.在实践中,如果文本的长度较长,P(wi | w1, w2, . . . , wi−1)的估算会非常困难.因此,研究者们提出使用一个简化模型:n元模型(n-gram model).在 n 元模型中估算条件概率时,只需要对当前词的前n个词进行计算.在n元模型中,…
自然语言处理中的语言模型预训练方法(ELMo.GPT和BERT) 最近,在自然语言处理(NLP)领域中,使用语言模型预训练方法在多项NLP任务上都获得了不错的提升,广泛受到了各界的关注.就此,我将最近看的一些相关论文进行总结,选取了几个代表性模型(包括ELMo [1],OpenAI GPT [2]和BERT [3])和大家一起学习分享. 1. 引言 在介绍论文之前,我将先简单介绍一些相关背景知识.首先是语言模型(Language Model),语言模型简单来说就是一串词序列的概率分布.具体来说,…
目录 简介 预训练任务简介 自回归语言模型 自编码语言模型 预训练模型的简介与对比 ELMo 细节 ELMo的下游使用 GPT/GPT2 GPT 细节 微调 GPT2 优缺点 BERT BERT的预训练 输入表征 Fine-tunninng 缺点 ELMo/GPT/BERT对比,其优缺点 BERT-wwm RoBERTa ERNIE(艾尼) 1.0 ERNIE 2.0 XLNet 提出背景 排列语言模型(Permutation Language Model,PLM) Two-Stream Sel…
OpenAI公司基于GPT模型的ChatGPT风光无两,眼看它起朱楼,眼看它宴宾客,FaceBook终于坐不住了,发布了同样基于LLM的人工智能大语言模型LLaMA,号称包含70亿.130亿.330亿和650亿这4种参数规模的模型,参数是指神经网络中的权重和偏置等可调整的变量,用于训练和优化神经网络的性能,70亿意味着神经网络中有70亿个参数,由此类推. 在一些大型神经网络中,每个参数需要使用32位或64位浮点数进行存储,这意味着每个参数需要占用4字节或8字节的存储空间.因此,对于包含70亿个参…
在本文中,我们将展示如何使用 大语言模型低秩适配 (Low-Rank Adaptation of Large Language Models,LoRA) 技术在单 GPU 上微调 110 亿参数的 FLAN-T5 XXL 模型.在此过程中,我们会使用到 Hugging Face 的 Transformers.Accelerate 和 PEFT 库. 通过本文,你会学到: 如何搭建开发环境 如何加载并准备数据集 如何使用 LoRA 和 bnb (即 bitsandbytes) int-8 微调 T…
Part1配置及参数 transformers==4.28.1 源码地址:transformers/configuration_utils.py at v4.28.1 · huggingface/transformers (github.com) 文档地址:Generation (huggingface.co) 对于生成任务而言:text-decoder, text-to-text, speech-to-text, and vision-to-text models,有以下几种生成的方法: gr…
1. 语言模型 2. Attention Is All You Need(Transformer)算法原理解析 3. ELMo算法原理解析 4. OpenAI GPT算法原理解析 5. BERT算法原理解析 6. 从Encoder-Decoder(Seq2Seq)理解Attention的本质 1. 前言 本文对2018年OpenAi提出的论文<Improving Language Understanding by Generative Pre-Training>做一个解析. 一个对文本有效的抽…
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发,来尽可能复原人们的感知世界,从而表达真实世界的过程.这里面就包括如图中所示的模型和算法,包括: ()文本层:NLP文本表示: ()文本-感知世界:词汇相关性分析.主题模型.意见情感分析等: ()文本-真实世界:基于文本的预测等: 显而易见,文本表示在文本挖掘中有着绝对核心的地位,是其他所有模型建构…
一.学习NLP背景介绍:      从2019年4月份开始跟着华为云ModelArts实战营同学们一起进行了6期关于图像深度学习的学习,初步了解了关于图像标注.图像分类.物体检测,图像都目标物体检测等,基本了解了卷积神经网络(CNN)原理及相关常用模型,如:VGG16.MaxNet等.之后从9月份开始在华为云AI专家的带领指引下,对AI深度学习的另外一个重要领域:自然语言处理(NLP)的学习,到目前为止学习了:命名实体识别.文本分类.文本相似度分析.问答系统.人脸检测.在这一个多月对NLP的处理…