上篇文章讲了卷积神经网络的基本知识,本来这篇文章准备继续深入讲CNN的相关知识和手写CNN,但是有很多同学跟我发邮件或私信问我关于PaddlePaddle如何读取数据.做数据预处理相关的内容.网上看的很多教程都是几个常见的例子,数据集不需要自己准备,所以不需要关心,但是实际做项目的时候做数据预处理感觉一头雾水,所以我就写一篇文章汇总一下,讲讲如何用PaddlePaddle做数据预处理. PaddlePaddle的基本数据格式 根据官网的资料,总结出PaddlePaddle支持多种不同的数据格式,…
孙剑博士分享的是<深度学习变革视觉计算>,分别从视觉智能.计算机摄影学和AI计算三个方面去介绍. 他首先回顾了深度学习发展历史,深度学习发展到今天并不容易,过程中遇到了两个主要障碍: 第一,深度神经网络能否很好地被训练.在深度学习获得成功之前曾被很多人怀疑,相比传统的机器学习理论,深度学习神经网络的参数要比数据大10倍甚至上百倍: 第二,当时的训练过程非常不稳定,论文即使给出了神经网络训练方法,其他研究者也很难把结果复现出来. 这些障碍直到2012年才开始慢慢被解除. 人工智能可以分为感知和认…
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-s…
http://blog.csdn.net/solomon1558/article/details/70173223 Torontocity HCI middlebury caltech 行人检测数据集 ISPRS航拍数据集 mot challenge跟踪数据集 数据集名称 KITTI 很知名的数据集 数据集链接 http://www.cvlibs.net/datasets/kitti/ Oxford RobotCar 对牛津的一部分连续的道路进行了上百次数据采集,收集到了多种天气.行人和交通情况…
3.3缺失值处理 R中缺失值以NA表示,判断数据是否存在缺失值的函数有两个,最基本的函数是is.na()它可以应用于向量.数据框等多种对象,返回逻辑值. > attach(data) The following objects are masked fromdata (pos = 3): city, price, salary > data$salary=replace(salary,salary>5,NA) > is.na(salary) [1] FALSEFALSE TRUE…
最近除了工作以外,业余在参加Paddle的AI比赛,在用Paddle训练的过程中遇到了一些问题,并找到了解决方法,跟大家分享一下: PaddlePaddle的Anaconda的兼容问题 之前我是在服务器上安装的PaddlePaddle的gpu版本,我想把BROAD数据拷贝到服务器上面,结果发现我们服务器的22端口没开,不能用scp传上去,非常郁闷,只能在本地训练.本机mac的显卡是A卡,所以只能装cpu版本的,安装完以后,我发现运行一下程序的时候报错了: import paddle.v2 as…
PaddlePaddle垃圾邮件处理实战(二) 前文回顾   在上篇文章中我们讲了如何用支持向量机对垃圾邮件进行分类,auc为73.3%,本篇讲继续讲如何用PaddlePaddle实现邮件分类,将深度学习方法运用到文本分类中. 构建网络模型   用PaddlePaddle来构建网络模型其实很简单,首先得明确paddlepaddle的输入数据的格式要求,知道如何构建网络模型,以及如何训练.关于输入数据的预处理等可以参考我之前写的这篇文章[深度学习系列]PaddlePaddle之数据预处理.首先我们…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
背景 近几年以深度学习技术为核心的人工智能得到广泛的关注,无论是学术界还是工业界,它们都把深度学习作为研究应用的焦点.而深度学习技术突飞猛进的发展离不开海量数据的积累.计算能力的提升和算法模型的改进.本文主要介绍深度学习技术在文本领域的应用,文本领域大致可分为4个维度:词.句子.篇章.系统级应用. 词.分词方面,从最经典的前后向匹配到条件随机场(Conditional Random Field,CRF)序列标注,到现在Bi-LSTM+CRF模型,已经不需要设计特征,从字粒度就能做到最好的序列标注…
架构师小组交流会是由国内知名公司技术专家参与的技术交流会,每期选择一个时下最热门的技术话题进行实践经验分享.第一期:来自沪江.滴滴.蘑菇街.扇贝架构师的 Docker 实践分享 第二期:来自滴滴.微博.唯品会.魅族.点评关于高可用架构的实践分享 第三期:京东.宅急送的微服务实践分享(上)(下) 第四期小组交流会邀请到了 Polarr 联合创始人宫恩浩.搜狗大数据总监高君.七牛云 AI 实验室负责人彭垚,对深度学习框架选型.未来趋势展开了交流. 自由交流 Polarr 宫恩浩 我是宫恩浩,现在在斯…