CRNN 论文: An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition CRNN不定长中文识别项目下载地址: https://download.csdn.net/download/dcrmg/10248818 CRNN是一种卷积循环神经网络结构,用于解决基于图像的序列识别问题,特别是场景文字识别问题.CRNN…
 快速的区域卷积网络方法(Fast R-CNN)   论文地址:https://arxiv.org/abs/1504.08083 摘要: 本文提出一种基于快速的区域卷积网络方法(Fast R-CNN)用于物体检测(object detection).Fast R-CNN建立在先前的工作的基础上,能够有效的使用深度卷积网络对物体候选区域(Region Proposals)进行分类.和之前的工作相比,Fast R-CNN采用了多种创新技术去提高训练和测试速度,然而它也提高了物体的检测精度.Fast …
点云配准的端到端深度神经网络:ICCV2019论文解读 DeepVCP: An End-to-End Deep Neural Network for Point Cloud Registration 论文链接: http://openaccess.thecvf.com/content_ICCV_2019/papers/Lu_DeepVCP_An_End-to-End_Deep_Neural_Network_for_Point_Cloud_Registration_ICCV_2019_paper.…
想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔记嘛 心路历程记录:然后可能有很多时候都是中英文夹杂,是因为我觉得有些方法并没有很好地中文翻译的意思(比如configuration space),再加上英文能更好的搜索.希望大家能接受这种夹杂写法,或者接受不了的话直接关掉这个看原文 前言:这是一篇02年的关于Motion Planning - P…
摘要:LaneNet是一种端到端的车道线检测方法,包含 LanNet + H-Net 两个网络模型. 本文分享自华为云社区<[论文解读]LaneNet基于实体分割的端到端车道线检测>,作者:一颗小树x. 前言 这是一种端到端的车道线检测方法,包含LanNet+H-Net两个网络模型. LanNet是一种多任务模型,它将实例分割任务拆解成"语义分割"和"对像素进行向量表示",然后将两个分支的结果进行聚类,得到实例分割的结果. H-Net是个小网络,负责预测…
前言引用 [1] End to End Learning for Self-Driving Cars从这里开始 [1.1] 这个是相关的博客:2016:DRL前沿之:End to End Learning for Self-Driving Cars [1.2] 其中提到的视频:GTC 2016: Self-Driving Car Demo, Roborace and Wrapping Up (part 11) 摘要 万事从摘要开始: We trained a convolutional neur…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
目录 XiangBai--[PAMI2018]ASTER_An Attentional Scene Text Recognizer with Flexible Rectification 作者和论文 方法概述 1. 主要思路 2. 方法框架和流程 3. 文章亮点 方法细节 1. 背景 2. Rectification Network 3. Recognition Network 4. 网络训练 实验结果 总结与收获 参考文献 XiangBai--[PAMI2018]ASTER_An Attent…
论文源址:https://arxiv.org/abs/1605.09410 tensorflow 代码:https://github.com/renmengye/rec-attend-public 摘要 卷积网络在像语义分割等结构预测任务中效果较好,但对于场景中不同实例个体分割仍存在一定的挑战性.实例分割有很多应用场景,比如,自动驾驶,图像捕捉,智能视频问答系统等.将大量的图形模型与低层次的可视化信息相结合用于实例分割.该文提出了一个端到端的带有注意力机制的RNN结构,来进行精细的实例分割.该网…
今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf 三位大佬:Jonathan Long Evan Shelhamer Trevor Darrell 这个网址是网上一个大佬记录的FCN的博客,同时深深感受到了自己与大佬的差距,但还是硬着头皮把论文阅读完成,贴出网址,和大家一起学习:https://blog.csdn.net/happyer8…