Pandas学习】的更多相关文章

对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了. 1. 获取数据,定义问题 没有数据,当然没法研究机器学习啦.:) 这里我们用UCI大学公开的机器学习数据来跑线性回归. 数据的介绍在这: http://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant 数据的下载地址在这: http://archive.ics.uci.edu/ml/ma…
Pandas 学习笔记 pandas 由两部份组成,分别是 Series 和 DataFrame. Series 可以理解为"一维数组.列表.字典" DataFrame 可以理解为"二维矩阵.表格.字典",可以视为是由 Series 组成的字典. 创建 import pandas as pd data = { 'Frank' : [25, 'male', 'reading'], 'Lily' : [22, 'female', 'running'] } frame =…
本来打算学习pandas模块,并写一个博客记录一下自己的学习,但是不知道怎么了,最近好像有点急功近利,就想把别人的东西复制过来,当心沉下来,自己自觉地将原本写满的pandas学习笔记删除了,这次打算写上自己的学习记录,这里送给自己一句话,同时送给看这篇博客的人,共勉 当你迷茫的时候,当你饱受煎熬的时候,请停下来,想想自己学习的初衷,想想自己写博客的初衷,爱你所爱,行你所行,听从你心,无问西东. 好了,正文开始. pandas是做数据分析非常重要的一个模块,它使得数据分析的工作变得更快更简单.由于…
pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 数据分组--〉归纳 程序示例: import numpy as np import pandas as pd # 读入数据 df=pd.read_csv('data1.txt') print('原始数据') print(df) #返回一个对象 group=df.groupby(df['产地']) #…
pandas学习(创建多层索引.数据重塑与轴向旋转) 目录 创建多层索引 数据重塑与轴向旋转 创建多层索引 隐式构造 Series 最常见的方法是给DataFrame构造函数的index参数传递两个或更多的数组,Series也可以创建多层索引. s = Series(np.random.randint(0,150,size=6),index=[['a','a','b','b','c','c'],['期中','期末','期中','期末','期中','期末']]) # 输出 a 期中 59 期末 4…
pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 describe 针对Series或DataFrame列计算统计 min/max/sum 计算最小值 最大值 总和 argmin argmax 计算能够获取到最小值和最大值的索引位置(整数) idxmin idxmax 计算能够获取到最小值和最大值的索引值 quantile 计算样本的分位数(0到1)…
pandas学习(一) Pandas基本数据结构 Series类型数据 Dataframe类型 基本操作 Pandas基本数据结构 两种常用数据结构: Series 一维数组,与Numpy中的一维array类似,二者与Python基本数据结构List很相似,Series能保存不同数据类型,字符串,boolbean值.数字等都能保存在Series中 DataFrame 二维的表格型数据结构.很多功能与R中的data frame类似.可以将DataFrame理解为Series的容器. Series类…
pandas  学习总结 作者:csj 更新时间:2018.04.02 shenzhen email:59888745@qq.com home: http://www.cnblogs.com/csj007523/p/8149929.html 1.import 2.export 3.create object 4.vewing,inspecting data 5.select data 6.data cleaning 7.filter,sort,groupby 8.join:merge,conca…
  用 scikit-learn 和 pandas 学习线性回归¶ from https://www.cnblogs.com/pinard/p/6016029.html 就算是简单的算法,也需要跑通整个流程,通过一个简单的回归的例子,可以看到: 数据的准备 ,数据的维度? 用哪个模型,如何训练,如何评价,可视化? 有一系列的东西需要去落地,推导理解十一方面,同时也要会用. 就这个回归的例子,和之前的 GMM 的例子很像,整个一套流程的东西很像,但是这里我们是用 sklearn 这个框架来完成的.…
最近参加了天池的一个机场航空人流量预测大赛,需要用时间序列来预测,因此开始使用python的pandas库 发现pandas库功能的确很强大,因此在这记录我的pandas学习之路. # -*- coding: utf-8 -*- # 统计未来3小时将要起飞的人数 import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import Min…