在深度学习领域中,最强力的理念之一就是可以将神经网络学习的一种知识应用到另一个独立的任务中. 看上面的例子,首先我们有一个已经完成训练的神经网络,其目标是图像识别,我们有了绿色的1000000张图片并训练了上面的网络. 在完成图像识别后,我们希望将我们的模型用于放射诊断任务,这就是一种迁移. 我们的做法是,把以及训练好的网络的输出层及其权重都删除掉,然后重新随机权重给最后一层,并且让它在放射诊断数据上进行训练. 在使用源数据进行训练的时候,我们把这一过程称为预训练pre-training,其目标…