PyTorch工具】的更多相关文章

以装饰器添加所有代码对应的tensor的信息 https://github.com/zasdfgbnm/TorchSnooper…
2017年3月开学,始终感觉自己计算机基础薄弱,加上之前自己也开始对机器学习,深度学习有一些了解,始终感觉没有入门.自己开始规划系统学习计算机软件(CS)和计算机视觉(CV)的基础知识.@2017/9/04/update 2017上半年巩固CS基础课程 CS_class repository 数据结构 操作系统 数据库系统 计算机网络 算法分析和设计 侯捷STL分析 牛课网直播开课精讲 总结 - 从2015年10月开始接触计算机软件,最开始使用C/C++,学习巩固基本的语法,看了课本教程:了解了…
https://github.com/chenyuntc/pytorch-book/blob/v1.0/chapter5-常用工具/chapter5.ipynb 希望大家直接到上面的网址去查看代码,下面是本人的笔记 在训练神经网络过程中,需要用到很多工具,其中最重要的三部分是:数据.可视化和GPU加速.本章主要介绍Pytorch在这几方面的工具模块,合理使用这些工具能够极大地提高编码效率. 1.数据处理 PyTorch提供了几个高效便捷的工具,以便使用者进行数据处理或增强等操作,同时可通过并行化…
使用教程,参考: https://github.com/facebookresearch/visdom https://www.pytorchtutorial.com/using-visdom-for-visualization-in-pytorch/ https://www.pytorchtutorial.com/pytorch-visdom/ ⚠️中间发现visdom安装的版本过低,导致发生了一些问题,后面更改了版本为最新版本0.1.8.8,所以可能会发现截图有些不同,但是功能不会有太多影响…
2018-12-04 14:05:49 Visdom是Facebook专门为PyTorch开发的一款可视化工具,其开源于2017年3月.Visdom十分轻量级,但却支持非常丰富的功能,能胜任大多数的科学运算可视化任务.其可视化界面如图所示. Visdom可以创造.组织和共享多种数据的可视化,包括数值.图像.文本,甚至是视频,其支持PyTorch.Torch及Numpy.用户可通过编程组织可视化空间,或通过用户接口为生动数据打造仪表板,检查实验结果或调试代码. Visdom中有两个重要概念: en…
2018/9/18更新  感觉tensorboardX插件更好用,已转用https://github.com/lanpa/tensorboardX 更新:新版visdom0.1.7安装方式为:conda install -c srivasv visdom pytorch下可采用visidom作为可视化工具 1. 安装 pip install visdomconda install visdom 启动 python -m visdom.server 在浏览器输入:http://localhost:…
2018年07月07日 17:30:40 __矮油不错哟 阅读数:221   1. 数据处理 数据加载 ImageFolder DataLoader加载数据 sampler:采样模块 1. 数据处理 数据加载 在Pytorch 中,数据加载可以通过自己定义的数据集对象来实现.数据集对象被抽象为Dataset类,实现自己定义的数据集需要继承Dataset,并实现两个Python魔法方法. __getitem__: 返回一条数据或一个样本.obj[index]等价于obj.__getitem__(i…
你的模型到底有多少参数,每秒的浮点运算到底有多少,这些你都知道吗?近日,GitHub 开源了一个小工具,它可以统计 PyTorch 模型的参数量与每秒浮点运算数(FLOPs).有了这两种信息,模型大小控制也就更合理了. 其实模型的参数量好算,但浮点运算数并不好确定,我们一般也就根据参数量直接估计计算量了.但是像卷积之类的运算,它的参数量比较小,但是运算量非常大,它是一种计算密集型的操作.反观全连接结构,它的参数量非常多,但运算量并没有显得那么大. 此外,机器学习还有很多结构没有参数但存在计算,例…
作者:韩信子@ShowMeAI 深度学习实战系列:https://www.showmeai.tech/tutorials/42 本文地址:https://www.showmeai.tech/article-detail/319 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 当今的很多AI算法落地,我们都需要依赖特定的机器学习框架,现在比较热门的 AI 工具库如 TensorFlow 和 PyTorch 都出自大厂,并且有很好的生态和资源,借助它们我们可以很…
3)plotting绘图 我们已经包装了几种常见的plot类型,以便轻松创建基本的可视化.这些可视化是由Plotly驱动的. Visdom支持下列API.由 Plotly 提供可视化支持. vis.scatter : 2D 或 3D 散点图 vis.line : 线图 vis.stem : 茎叶图 vis.heatmap : 热力图 vis.bar : 条形图 vis.histogram: 直方图 vis.boxplot : 箱型图 vis.surf : 表面图 vis.contour : 轮廓…
visdom的github repo: https://github.com/facebookresearch/visdom 知乎一个教程:https://zhuanlan.zhihu.com/p/34692106 1.screen或者tmux,先开启visdom server 我比较习惯用screen,所以可以screen -S visdom_server,创建一个screen session,然后输入visdom 在本地浏览器输入ip地址加8097端口号,如128.21.32.54:8097…
4)Generic Plots 注意,服务器API遵循数据和布局对象的规则,这样您就可以生成自己的任意Plotly可视化: # Arbitrary visdom content trace = dict(x=[, , ], y=[, , ], mode="markers+lines", type='custom', marker={, "}, text=["one", "two", "three"], name='1…
1.安装 安装命令: (deeplearning) userdeMBP:~ user$ pip install visdomCollecting visdom  Downloading https://files.pythonhosted.org/packages/97/c4/5f5356fd57ae3c269e0e31601ea6487e0622fedc6756a591e4a5fd66cc7a/visdom-0.1.8.8.tar.gz (1.4MB) 2.启动 1) 启动命令: (deepl…
在使用过程中一直以为要在哪个指定的environment下(即参数env)绘制内容,就必须在使用时声明 比如如果不声明,默认的就是在'main'环境下,端口为8097: viz = visdom.Visdom() 这个时候如果想要在另一个环境,比如'mydata',其实并不用重新声明下面的语句: viz = visdom.Visdom(env='mydata') 可以仍使用viz = visdom.Visdom()的viz 只要在你绘制内容的时候注明使用的是env='mydata'这个环境,如果…
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
torch 包 torch 包含了多维张量的数据结构以及基于其上的多种数学操作.另外,它也提供了多种工具,其中一些可以更有效地对张量和任意类型进行序列化. 它有CUDA 的对应实现,可以在NVIDIA GPU上进行张量运算(计算能力>=2.0). http://www.aibbt.com/a/pytorch/ 张量 Tensors torch.is_tensor[source] torch.is_tensor(obj) 如果obj 是一个pytorch张量,则返回True 参数: obj (Ob…
[导读]Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二.随后是Caffe.PyTorch和Theano,再次是MXNet.Chainer和CNTK. Keras作者François Chollet刚刚在Twitter贴出一张图片,是近三个月来arXiv上提到的深度学习开源框架排行: TensorFlow排名第一,这个或许并不出意外,Keras排名第二,随后是Caffe.PyT…
什么是PyTorch?   PyTorch是Facebook人工智能团队开发的一个机器学习和深度学习工具,用于处理大规模图像分析,包括物体检测,分割与分类.但是它的功能不仅限于此.它与其它深度学习框架结合,能够完成复杂的算法.PyTorch用Python和C++编写.   PyTorch属于深度学习框架中的重要一员,与TensorFlow, Keras, Theano等其它深度学习框架不同,它是动态计算图模式,其应用模型支持在运行过程中根据运行参数动态改变,而其它框架都是静态计算图模式,其模型在…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com ubuntu 16.04用了1年多了,18.04版已经发布也半年了,与时俱进,重装Linux系统,这里主要记录下gpu加速pytorch 1.0.0版本的安装. 一.工具安装 sudo apt-get install gcc sudo apt-get install g++ sudo apt-get install make 二.禁用nouveau sudo gvim /etc/modprobe.d…
×下面资源个人全都跑了一遍,不会出现仅是字符而无法运行的状况,运行环境: Geoffrey Hinton在多次访谈中讲到深度学习研究人员不要仅仅只停留在理论上,要多编程.个人在学习中也体会到单单的看理论到头来还是一头雾水,只有不断和编程结合,才能检验自己是否掌握了这门知识.但是作为初学者应先以跑通理论为第一要义,所以可以使用有关框架,降低入门难度,避免重复造轮子. 一.TensorFlow 资源地址: 资源介绍: 资源目录: 二.PyTorch 资源地址: 资源介绍: 这个资源为深度学习研究人员…
诞生 1.2017年1月,Facebook人工智能研究院(FAIR)团队在GitHub上开源了pyTorch,并迅速占领GitHub热度榜榜首. 常见深度学习框架简介 Theano 1.Theano最初诞生于蒙特利尔大学LISA实验室,于2008年开始开发,是第一个有较大影响力的Python深度学习框架:Theano是一个Python库,可用于定义.优化和计算数学表达式,特别是多维数组(numpy.ndarray),在解决包含大量数据的问题时,使用Theano编程可实现比手写C语句更快的速度,二…
PyTorch常用代码段整理合集 转自:知乎 作者:张皓 众所周知,程序猿在写代码时通常会在网上搜索大量资料,其中大部分是代码段.然而,这项工作常常令人心累身疲,耗费大量时间.所以,今天小编转载了知乎上的一篇文章,介绍了一些常用PyTorch代码段,希望能够为奋战在电脑桌前的众多程序猿们提供帮助! 本文代码基于 PyTorch 1.0 版本,需要用到以下包 import collectionsimport osimport shutilimport tqdm import numpy as np…
一.PyTorch是什么? 这是一个基于Python的科学计算软件包,针对两组受众: ①.NumPy的替代品,可以使用GPU的强大功能 ②.深入学习研究平台,提供最大的灵活性和速度 二.入门 ①.张量(tensor): 张量与NumPy的ndarray类似,另外还有Tensors也可用于GPU以加速计算: from __future__ import print_function import torch 构造一个未初始化的5x3矩阵: x = torch.empty(5, 3) print(x…
Pytorch之训练器设置 引言 深度学习训练的时候有很多技巧, 但是实际用起来效果如何, 还是得亲自尝试. 这里记录了一些个人尝试不同技巧的代码. tensorboardX 说起tensorflow, 我就一阵头大, google强力的创造了一门新的语言! 自从上手Pytorch后, 就再也不想回去了. 但是tensorflow的生态不是一般的好, 配套设施齐全, 尤其是可视化神器tensorboard, 到了Pytorch这边, 幸好还有visdom和tensorboardX, 但是前者实在…
生产与学术 写于 2019-01-08 的旧文, 当时是针对一个比赛的探索. 觉得可能对其他人有用, 就放出来分享一下 生产与学术, 真实的对立... 这是我这两天对pytorch深度学习->android实际使用的这个流程的一个切身感受. 说句实在的, 对于模型转换的探索, 算是我这两天最大的收获了... 全部浓缩在了这里: https://github.com/lartpang/DHSNet-PyTorch/blob/master/converter.ipynb 鉴于github加载ipyn…
pytorch训练出.pth模型如何在MacOS上或者IOS部署,这是个问题. 然而我们有了onnx,同样我们也有了coreML. ONNX: onnx是一种针对机器学习设计的开放式文件格式,用来存储训练好的模型,并进行多种框架模型间的转换. coreML: Apple在2017年 MacOS 10.13以及IOS11+系统上推出了coreML1.0,官网地址:https://developer.apple.com/documentation/coreml . 2018年又推出MacOS 10.…
参考:https://github.com/chenyuntc/pytorch-book/tree/v1.0/chapter6-实战指南 希望大家直接到上面的网址去查看代码,下面是本人的笔记 将上面地址的代码下载到本地后进行操作 1.安装依赖 (deeplearning) userdeMacBook-Pro:dogcat- user$ pip install -r requirements.txt ... Successfully built fire ipdb torchnet Install…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 本章介绍的nn模块是构建与autograd之上的神经网络模块 除了nn外还会介绍神经网络中常用的工具,比如优化器optim.初始化init等 1.nn.Module torch的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层,也可以表示一个包含很多层的神经网络 在实际使用中,最常见的做法是继承nn.Modu…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 torch.autograd就是为了方便用户使用,专门开发的一套自动求导引擎,她能够根据输入和前向传播过程自动构建计算图,并执行反向传播 1.Variable 深度学习算法的本质是通过反向函数求导数,pytorch的Autograd模块实现了此功能.在Tensor上的所有操作,Autograd都能够为他们自动提供微分,避免手动计算的复杂…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 pytorch的设计遵循tensor-> variable(autograd)-> nn.Module三个由低到高的抽象层次,分别代表高维数组(张量).自动求导(变量)和神经网络(层/模块).这三个抽象之间联系紧密,可以同时进行修改和操作 在IPython和Jupyter notebook两个工具中使用了Jupyter noteboo…