Analysis 快速幂模板,注意在最后输出时也要取模. 快速幂模板 inline ll ksm(ll x,ll y) { ll ans=; ) { ) { ans*=x; ans%=k; } x*=x; x%=k; y>>=; } return ans; } 题解 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace s…
题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出"b^p mod k=s" s为运算结果 输入输出样例 输入样例#1: 2 10 9 输出样例#1: 2^10 mod 9=7 这道题有各种各样的做法,来整理一下几种思路吧 做法1(来自一本通) 思路 1.本题主要的难点在于数据规模很大(b…
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 S1:用快速幂快速的求出a^b 原理 (1)如果将 a 自乘一次,就会变成 a^2 .再把 a^2 自乘一次就会变成 a^4 .然后是 a^8…… 自乘 n 次的结果是 a^(2^n) . (2)a^x*a^y = a^(x+y). (3)将 b 转化为二进制观看一下: 举个栗子:     a^11=a^…
题目链接:https://www.luogu.org/problemnew/show/P1226 第一次学快速幂,将别人对快速幂原理的解释简要概括一下: 计算a^b时,直接乘的话计算次数为b,而快速幂则只需要log2(b)次,很实用. 快速幂有很多种解释,以下介绍两种: 一. 我们可以将b转换为二进制来看,比如计算2^11,因为(11)10=(1011)2,所以211=21*8+0*4+1*2+1*1=21×8×21×2×21×1. 具体计算可以参考代码: int quickPower(int…
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 作为初学者,还是应当用简洁的方法和代码(我认为很简洁),废话不说,直接看代码: #include<iostream> #include<cstdio> #include<cmath> using namespace std; long long x(long long int a…
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输出样例 输入样例#1: 复制 2 10 9 输出样例#1: 复制 2^10 mod 9=7 快速幂 要注意1 0 1的情况.C++代码: #include<iostream> #include<algorithm> #include<cstdio> using namesp…
我是题目 快速幂就是快速求 \(a^b\)的一种算法 快速幂 思想 : 比如我要求 \(6^9\) 首先将幂转化为二进制形式 : \[6^9 = 6^{1001} \tag{1} \] 可以得到 : \[6^9 = 6^{2^{3}} \times 6^{2^0} \tag{2} \] 由于一个数变成二进制位数为\(\log _2\boldsymbol{b}\) 位, 故相对于直接求幂 ( b位需要b次计算 ), 时间复杂度减小了 取余 两条基本性质 : \[\left( \boldsymbol…
https://www.luogu.org/problemnew/show/P1226 模板题 直接上代码吧 #include<bits/stdc++.h> using namespace std; int main() { ; cin>>b>>p>>k; c=p,base=b; ) { ) { ans*=base; ans%=k; } base*=base; base%=k; p>>=; } ans%=k; printf("%lld^…
还记得 前段时间学习二进制快速幂有多崩溃 当然这次方法略有不同 居然轻轻松松的 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 ----------------------------------------------------------------------- #include<cstdio> #include<cmath> u…
1.题目分析 原题 本题在于快速幂的使用,以及对long long的应用问题. 2.解题思路 快速幂 求幂常见用法: int pow(int a,int b) { int ans; for(int i = 1;i<=b;++i) { ans*=a; } return ans; } 原理十分简单,将a乘b次. 时间复杂度: O(n) 但快速幂比它更快: while(m>0){ if(m%2==1) ans=ans*b%p; b=b*b%p; m=m>>1; } (以上是算法示例) 时…
输入\(b\),\(p\),\(k\)的值,求\(b^p mod k\)的值.其中\(b\),\(p\),\(k^2\)为长整型数. 1.普通做法 \(print\) \(pow(b,p)\)\(mod\)\(k\) 详见数据范围.于是我们需要手动执行幂运算. 2.依然是普通做法 for (int i=1;i<=p;i++) { ans*=b; ans%=k; } T飞吧qwq 3.(依靠位运算的)快速幂 不想解释--太懒了(累) (毕竟这种东西解释起来需要大量LaTeX) 当作一篇保存的模板吧…
Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 69614    Accepted Submission(s): 25945 Problem Description Given a positive integer N, you should output the most right digit of N…
链接: https://vjudge.net/problem/LightOJ-1282 题意: You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk. 思路: 后三位快速幂取余,考虑前三位. \(n^k\)可以表示为\(a*10^m\)即使用科学计数法. 对两边取对数得到\(k*log…
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b /= ; } return ans; } 快速幂取模运算 公式: 最终版算法: int PowerMod(int a, int b, int c) { ; a = a % c; ) { = = )ans = (ans * a) % c; b = b/; a = (a * a) % c; } retur…
题目链接:https://www.luogu.org/problemnew/show/P1226 题意:求b^p % m之后的结果 题解:快速幂模板 代码: #include<iostream> #include<algorithm> #include<cmath> #include<cstdio> using namespace std; #define ll long long ll b,p,mod; ll qpow( ll a,ll b){ ll re…
链接:https://www.luogu.org/problemnew/show/P1226 题解:(重要结论:(a*b*c*d*...*n)%k=[(a%k)*(b%k)*...(n%k)]%k) #include<iostream>#include<cstdio>using namespace std; long long b,p,k,s=1; void m(long long i) { while(p>0) {if(p&1) s=s*i%k; i=i*i%k;…
给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^9) Output 输出计算结果 Input示例 3 5 8 Output示例 3 #include<stdio.h> long long quickmod(long long a,long long b,long long m){ ; while(b){ ){ ans=(ans*a)%m;//这…
题目链接 https://www.mina.moe/archives/7598 //285ms 3.53MB #include <cstdio> #include <cctype> #include <cstring> #include <algorithm> //#define gc() getchar() #define MAXIN 300000 #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,M…
题目:http://poj.org/problem?id=1995 题目解析:求(A1B1+A2B2+ ... +AHBH)mod M. 大水题. #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm> #include <math.h> using namespace std; int n,mod,sum; int main() { ],b[…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2817 题目大意:给出三个数,来判断是等差还是等比数列,再输入一个n,来计算第n个数的值. #include <iostream> #include <cstdio> #include <cmath> #define m 200907 using namespace std; __int64 fun(__int64 j,__int64 k) { __int64 s=; whi…
题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被4整除就是必胜态,只要能被4整除就是必败态. 实现代码如下: #include <bits/stdc++.h> using namespace std; int T, n; int main() { cin >> T; while (T --) { cin >> n; pu…
"红色病毒"问题 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9329    Accepted Submission(s): 3816 Problem Description 医学界发现的新病毒因其蔓延速度和Internet上传播的"红色病毒"不相上下,被称为"红色病毒",经研究发现,…
Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1845 Appoint description:   System Crawler  (2015-05-27) Description Consider two natural numbers A and B. Let S be the sum of all natural…
Problem Description Given a positive integer N, you should output the most right digit of N^N. Input The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.Each…
P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输出样例 输入样例#1: 复制 2 10 9 输出样例#1: 复制 2^10 mod 9=7 快速幂取膜版   #include<cstdio> #include<cstring> #include<iostream> #include<…
P1226 取余运算||快速幂 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输出样例 输入样例#1: 复制 2 10 9 输出样例#1: 复制 2^10 mod 9=7 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm…
P2613 [模板]有理数取余 题目描述 给出一个有理数c=\frac{a}{b}c=ba​,求c\ \bmod 19260817c mod19260817的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数aa.第二行,一个整数bb. 输出格式: 一个整数,代表求余后的结果.如果无解,输出Angry! 输入输出样例 输入样例#1: 复制 233 666 输出样例#1: 复制 18595654 说明 对于所有数据,0\leq a,b \leq 10^{10001}0≤a,b≤10100…
P2613 [模板]有理数取余 读入优化预处理 $\frac {a}{b}\mod 19620817$ 也就是$a\times b^{-1}$ $a\times b^{-1}\mod 19620817=a\times b^{19620815}\mod 19620817$ 除法转化为了乘法,同余的性质... 求一个逆元即可,根据费马小定理,由于$19620817$是一个质数 #include<bits/stdc++.h> #define LL long long using namespace…
A sequence of numbers                                                             Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)                                                                                    …
cojs 1130. 取余运算 ★   输入文件:dmod.in   输出文件:dmod.out   简单对比时间限制:10 s   内存限制:128 MB [题目描述] 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. [输入格式] 输入文件只包含一行,即b  p  k. [输出格式] 所求运算的余数. [样例输入] 2 10 9 [样例输出] 7 #include<iostream> using namespace std; #include<cstdio…