batch、epoch、iteration】的更多相关文章

batch_size 单次训练用的样本数,通常为2^N,如32.64.128... 相对于正常数据集,如果过小,训练数据就收敛困难:过大,虽然相对处理速度加快,但所需内存容量增加. 使用中需要根据计算机性能和训练次数之间平衡. epoch 1 epoch = 完成一次全部训练样本 = 训练集个数 / batch_size iterations 1 epoch = 完成一次batch_size个数据样本迭代,通常一次前向传播+一次反向传播…
深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能在最优点附近…
深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能在最优点附近…
转自:https://blog.csdn.net/wcy23580/article/details/90082221…
batch 深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能…
转自: https://blog.csdn.net/qq_27923041/article/details/74927398 深度学习中经常看到epoch. iteration和batchsize,下面按自己的理解说说这三个的区别: (1)batchsize:批大小.在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练: (2)iteration:1个iteration等于使用batchsize个样本训练一次: (3)epoch:1个epoch等于使用训练集中的全…
在上一篇博客<TensorFlow之DNN(一):构建“裸机版”全连接神经网络>中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦)和正则化方法,通过减小batch size,也算得到了一个还可以的结果. 那个网络只有两层,而且MINIST数据集的样本量并不算太大.如果神经网络的隐藏层非常多,每层神经元的数量巨大,样本数量也巨大时,可能出现三个问题: 一是梯度消失和梯度爆炸问题,导致反向传播算法难以进行下去: 二是在如此庞大的网络中进行训…
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种(mini-batch gradient descent和stochastic gradient descent),关于Batch gradient descent(批梯度下降,BGD)就不细说了(一次迭代训练所有样本),因为这个大家都很熟悉,通常接触梯队下降后用的都是这个.这里主要介绍Mini-b…
cost function,一般得到的是一个 scalar-value,标量值: 执行 SGD 时,是最终的 cost function 获得的 scalar-value,关于模型的参数得到的: 1. 分类和预测 评估: 准确率: 速度:健壮性: 可规模性: 可解释性: 2. Data Augmentation 平移.旋转/翻转.缩放.加噪声 3. 溢出 矩阵求逆,W=PQ−1 W = P/(Q+1e-5*eye(d)); 4. batch norm.relu.dropout 等的相对顺序 Or…
1.周期性定时任务crontab cron['krɒn] 一时间单位  table crontab -e 进入编辑定时任务界面,每一行代表一个定时任务,#开头的行为注释行,一行分成6列 分钟 小时 日期 月份 星期 调度的作业(命令),默认情况下/etc/crontab文件有规则(fedora亲测) 前五列允许出现的字符有  数字  -  *  /  , 星期还可以采用mon.tue.wed.thu.fri.sat.sun,0-7(0和7为周日) * * * /bin/databasebacku…