内容介绍 本书深入浅出地介绍了LINGO的基础知识.用LINGO语言描述现实问题的方法和用Excel处理数据的方法,重点是这两种软件在解决各种优化问题以及在数学建模中的应用,通过丰富的实例介绍了把实际问题转化为数学模型的方法,以及综合运用LINGO等软件来求解模型的手段和技巧. 本书的主要内容包括LINGO的基本用法.LINGO在图论和网络模型中的应用.用LINGO求解非线性规划和多目标规划.LINGO与其他软件之间的数据传递.Excel在数学建模中的应用和LINGO在数学建模中的应用实例等.…
内容介绍 本书的作者都具有实际的数学建模参赛经历和竞赛指导经验.书中内容完全是根据数学建模竞赛的需要而编排的,涵盖了绝大部分数学建模问题的matlab求解方法.本书内容分上下两篇.上篇介绍数学建模中常规方法的matlab实现,包括matlab交互.数据建模.程序绘图.灰色预测.规划模型等方法:还介绍了各种高级方法的matlab实现,包括遗传算法.粒子群算法.模拟退火算法.人工神经网络.小波分析.动态仿真.数值模拟等.下篇以真实的数学建模赛题为案例,介绍了如何用matlab求解实际的数学建模问题,…
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学建模新手入门 『Python 数学建模 @ Youcans』 系列 是专门为学习数学建模.准备数模竞赛的小白准备的系列教程. [Python数学建模-01.新手必读] 主要讨论小白刚刚接触数学建模的几个困惑: 学习数学建模难不难?应该怎么学? 学习数学建模选择什么计算机语言最好?我要学 Matlab…
数据导入是所有数模编程的第一步,比你想象的更重要. 先要学会一种未必最佳,但是通用.安全.简单.好学的方法. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数据导入是所有数模编程的第一步 编程求解一个数模问题,问题总会涉及一些数据. 有些数据是在题目的文字描述中给出的,有些数据是通过题目的附件文件下载或指定网址提供的,还有些数据是需要自己搜集的.不论是哪种方式获得的数据,也不论哪种类型的问题和算法,首先都是要把这些数据以适当的方式和格式导入到程序中. 如果数据…
前言 不管是不是巴萨的球迷,只要你喜欢足球,就一定听说过梅西(Messi).苏亚雷斯(Suarez)和内马尔(Neymar)这个MSN组合.在众多的数学建模辅助工具中,也有一个犀利无比的MSN组合,他们就是python麾下大名鼎鼎的 Matplotlib + Scipy + Numpy三剑客. 本文是我整理的MSN学习笔记,有些理解可能比较肤浅,甚至是错误的.如果因此误导了某位看官,在工作中造成重大失误或损失,我顶多只能赔偿一顿饭——还得是我们楼下的十元盒饭.特此声明. 文中代码均从我的这台时不…
一.学习目标. (1)了解Matlab与数学建模竞赛的关系. (2)掌握Matlab数学建模的第一个小实例—评估股票价值与风险. (3)掌握Matlab数学建模的回归算法. 二.实例演练. 1.谈谈你对Matlab与数学建模竞赛的了解. Matlab在数学建模中使用广泛:MATLAB 是公认的最优秀的数学模型求解工具,在数学建模竞赛中超过 95% 的参赛队使用 MATLAB 作为求解工具,在国家奖队伍中,MATLAB 的使用率几乎 100%.虽然比较知名的数模软件不只 MATLAB. 人们喜欢使…
选址问题是要选择设施位置使目标达到最优,是数模竞赛中的常见题型. 小白不一定要掌握所有的选址问题,但要能判断是哪一类问题,用哪个模型. 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法. 欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新 1. 选址问题 选址问题是指在某个区域内选择设施的位置使所需的目标达到最优.选址问题也是一种互斥的计划问题. 例如投资场所的选址:企业要在 m 个候选位置选择若干个建厂,已知建厂费用.运输费及 n 个地区的产品需求量,…
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手把手教你搞定微分方程. 通过二阶 RLC 电路问题,学习微分方程模型的建模.求解和讨论. 欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新 1. 微分方程 1.1 基本概念 微分方程是描述系统的状态随时间和空间演化的数学工具.物理中许多涉及变力的运动学.动力学问题,如空…
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本文详细给出了 SEIR 模型微分方程的建模.例程.结果和分析,让小白都能懂. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. SEIR 模型 1.1 SEIR 模型的提出 建立传染病的数学模型来描述传染病的传播过程,要根据传染病的发病机理和传播规律, 结合疫情…
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本文详细给出了几种改进 SEIR 模型微分方程的思路.建模.例程和结果,让小白学会模型分析与改进. 『Python小白的数学建模课 @ Youcans』 带你从数模小白成为国赛达人. Python小白的数学建模课-B2.新冠疫情 SI模型 Python小白的数学建模课-B3.新冠疫情 S…